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SUMMARY

There have been substantial interests in investigating HIV dynamics for understanding the

pathogenesis of HIV-1 infection and antiviral treatment strategies. Analysis of the dynamics of

HIV-1 infection in response to drug therapy has elucidated crucial properties of viral dynam-

ics. Although many HIV dynamic models have been proposed by AIDS researchers in the last

decade, they have only been used to quantify short-term viral dynamics and are rarely applied

to modeling virological response of long-term dynamics with the reduction in viral load either

sustained or followed by a rebound, oscillation or a new viral load level. Since it is difficult

to establish a relationship between antiviral response and pharmacokinetics due to many con-

founding factors related to antiviral responses, such as compliance and insurgence of resistance

to treatment, the estimation of the dynamic parameters, therefore, has been mostly limited to

the case of simplified, in particular, linearized models for a short-term viral dynamics. In this

paper, a mechanism-based dynamic model is proposed for characterizing the long-term viral dy-

namics with antiretroviral therapy, described by a set of nonlinear differential equations without

closed-form solutions. In this model we directly incorporate drug concentration, adherence and

drug susceptibility into a function of treatment efficacy, defined as an inhibition rate of virus

replication. We investigate a Bayesian approach under the framework of hierarchical Bayesian

(mixed-effects) models for estimating unknown dynamic parameters. In particular, interest fo-

cuses on estimating individual dynamic parameters. The proposed methods can not only help

to alleviate the difficulty in parameter identifiability, but also flexibly deal with sparse and un-

balanced longitudinal data from individual subjects. For the purpose of illustration, we present

two simulation examples to implement the proposed approach and apply the methodology to a

real data set from an AIDS clinical trial. The basic concept of longitudinal dynamic systems and

the proposed methodologies are generally applicable to any other biomedical dynamic systems.

KEY WORDS: Antiretroviral drug therapy; Bayesian mixed-effects models; drug exposures;

drug resistance; HIV dynamics; MCMC; parameter estimation.
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1. INTRODUCTION

Treatment of human immunodeficiency virus type 1 (HIV-1)-infected patients with highly active

antiretroviral therapies (HAART), consisting of reverse transcriptase inhibitor (RTI) drugs and

protease inhibitor (PI) drugs, results in several orders of magnitude of viral load reduction. The

rapid decay in viral load can be observed in a relatively short term [45, 46, 66], and it either can

be sustained or may be followed by a resurgence of virus within months [31]. The resurgence of

virus may be caused by drug resistance, noncompliance, pharmacokinetics problems and other

confounding factors during therapy. Mathematical models, describing the dynamics of HIV and

its host cells, have been of essential importance in understanding the biological mechanisms of

HIV infection, the pathogenesis of AIDS progression and the role of clinical factors in antiviral

activities.

Many HIV dynamic models have been proposed by AIDS researchers [15, 25, 27, 40, 41, 44,

45, 46, 64, 66] in the last decade to provide theoretical principles in guiding the development

of treatment strategies for HIV-infected patients, and have been used to quantify short-term

dynamics. Unfortunately, these models are of limited utility in interpreting long-term HIV

dynamic data from clinical trials. The main reason is that many parameters of these models can

not be estimated uniquely from viral load data. It is due to this problem that simplified and

linearized models have been often used to characterize the viral dynamics based on observed

viral load data [25, 44, 45, 64, 65, 66]. Although these models are useful and convenient to

quantify short-term viral dynamics, they can not characterize more complex long-term viral load

trajectory. In this paper, we utilize a set of relatively simplified models, a system of differential

equations with time-varying parameters, to characterize long-term viral dynamics. In our models

we consider many factors related to the resurgence of viral load, such as the intrinsic nonlinear

HIV dynamics, pharmacokinetics, compliance to treatment and drug susceptibility, and thus are

flexible to quantify long-term HIV dynamics.

Data in viral dynamic studies usually consist of repeated viral load measurements on each

of a number of subjects. Because the viral dynamic processes for different patients share certain

similar patterns while still having distinct individual characteristics, the hierarchical nonlinear

mixed-effects models appear to be reasonable for modeling HIV dynamics. Although mixed-

effects modeling has been used in modeling pharmacokinetics/pharmacodynamics (PK/PD) for

many years [54, 55], it was first applied to HIV studies by Wu et al. [65, 66]. Mixed-effects models

offer a flexible framework where dynamic parameters for both individuals and population can be

estimated by combining information across all subjects. The nonlinear mixed-effects (NLME)

model fitting can be implemented in standard statistical software, such as the function nlme()

in S-plus [47], the procedure NLMIXED in SAS [53] and other packages like NONMEM [6] and

NLMEM [17]. In practice, the difficulty of using these standard packages in fitting NLME
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models arises when the closed form of the nonlinear function is not available. For example, our

viral dynamics nonlinear function is the solution of a system of nonlinear ordinary differential

equations, which does not have a closed form. In this case the standard packages can not be

used directly, and we must rely on the numerical solution to fit the mixed-effects models.

Bayesian statistics has made great strides in recent years. For various models, including the

hierarchical NLME, parameter estimation and statistical inference are carried out via Markov

chain Monte Carlo (MCMC) procedures [3, 4, 18, 19, 22, 23, 24, 35, 48, 49, 57, 62, 63]. The

MCMC methods were introduced in NLME models with applications in PK/PD modeling in

mid-1990s [3, 22, 35, 62, 63]. In particular, Bayesian analysis for a population HIV dynamic

model was investigated by Putter et al. [48] and Han et al. [24] whose studies focused on the

early dynamics of post-treatment HIV-RNA decline. Han et al. considered a linear dynamic

model with the assumption that the number of uninfected target cells remained constant during

a treatment. Under this assumption, the function of viral load over time t had a closed form.

Although Putter et al. extended the model to a system of nonlinear differential equations, they

only used short-term viral load data to estimate parameters, and they also assumed that the

drug efficacy was constant. In addition, they did not consider the fact of variability in drug

susceptibility (drug resistance) and adherence in the presence of antiretroviral therapy.

We combine Bayesian approach and mixed-effects modeling approach to estimate both pop-

ulation and individual dynamic parameters under a framework of the hierarchical Bayesian

nonlinear (mixed-effects) model. In particular, we focus on estimating individual dynamic pa-

rameters by borrowing the population prior information to handle the identifiability problem

at the individual level. The advantages of the proposed approach include: (i) we model the

population viral dynamics, within-subject and between-subject variations via the hierarchical

structure-based models; (ii) our models are flexible in dealing with both sparse and unbalanced

longitudinal data from individual subjects by borrowing information from the population; (iii)

the Markov chain Monte Carlo (MCMC) methods can be easily employed for computation,

and thus closed-form solutions to the model, a system of nonlinear differential equations with

time-varying coefficients, are not required; (iv) since the posterior distributions for the unknown

parameters can be obtained, it is easy to conduct statistical inferences; and (v) the approach

has more power to identify model parameters using the population prior information.

This paper is organized as follows. The concept of longitudinal dynamic systems is intro-

duced in Section 2. We propose a simplified viral dynamic model with time-varying drug efficacy

which incorporates the effects of pharmacokinetic (PK) variation, drug resistance and adherence

in Section 3. A Bayesian approach implemented using MCMC techniques is employed to esti-

mate dynamic parameters in Section 4. The simulation studies are used to assess and illustrate

our methodologies in Section 5. The data for pharmacokinetics, drug resistance and adher-

ence as well as the viral load data from an AIDS clinical trial are described and the proposed
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methodology is applied to estimate the dynamic parameters in Section 6. Finally, the paper is

concluded with some discussions in Section 7.

2. LONGITUDINAL DYNAMIC SYSTEMS

A dynamic system in engineering and physics, specified by a set of differential equations, is

usually used to describe a dynamic process which follows physical laws or engineering principles.

The idea of dynamic systems has been introduced into biomedical fields in recent years because

of the rapid development of computational power and deep understanding of biological processes

at cellular level with the assistance of modern biotechnologies. Examples of biological dynamic

systems include genetic regulatory networks, tumor cell kinetics and viral dynamics.

Genetic regulatory networks can be described by a set of differential equations [10] as follow.

d
dt

X = f(Y) − w1X,
d
dt

Y = w2X − w3Y,
(1)

where the two differential equations represent two components: n-dimensional mRNA concen-

tration vector (X) and n-dimensional protein concentration vector (Y) with n being the number

of genes in the genome. f(Y) is n-dimensional translational function vector, and n × n non-

degenerate diagonal matrices wi (i = 1, 2, 3) denote degradation rates of mRNAs, translational

constants and degradation rates of proteins, respectively.

The models for tumor-immune system dynamics have been proposed by biomathematicians

many years ago. For example, let X and Y denote two different kinds of tumor cells. Then a

basic model for tumor cell kinetics, which is a set of differential equations, is given as [30, 37]

d
dt

X = r1X(1 − K−1
1 X − w1Y ),

d
dt

Y = r2Y (1 − K−1
2 Y − w2X),

(2)

where the r’s are the growth parameters of the individual populations, the K’s are the carrying

capacities for the individual populations, and w’s are interspecific competition rates. These

models are successfully used in cancer research.

HIV dynamic models have been studied since late 1980s [25, 44, 45, 64, 66]. A simple model

without antiviral treatment can be written [44]

d
dt

X = kTY − δX,
d
dt

Y = NδX − cY,
(3)

where X is concentration of infected cells that produce virus, Y is free virus, T is target unin-

fected cells, k is the infection rate of T cells infected by virus, δ is the death rate for infected

cells, N is the number of new virions produced from each of infected cells during their life-time,

and c is the clearance rate of free virions. Similar models have been used for hepatitis virus
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dynamics [42]. In this paper, we will focus our attention on studies of HIV dynamics, but models

are more complicated than this simple model

The above models are general descriptions for genetic networks, tumor cell kinetics and viral

dynamics for a single host. However, each individual host or subject may follow similar dynamic

models but with different dynamic parameters. Thus, within-host and between-host variations

need to be modeled appropriately. Some of the dynamic variables or their functions may be

measured repeatedly for each individual in biomedical studies. This is similar to a longitudinal

study but with dynamic systems. Thus, a longitudinal dynamic system can be described using

a general framework of (hierarchical) nonlinear mixed-effects models (NLME) as follows. For

individual i,

Stage 1. Within-subject variation:

d
dt

Xi(t) = f(X i(t), θi, t), Xi(0) = X0i, i = 1, · · · , n,

Y i(tj) = g(X i(θi, tj), φi, tj) + ei(tj), ei|θi, φi ∼ (0, Ri), j = 1, · · · , mi

(4)

where X i(t) is a vector of dynamic (latent) variables, f(·) is known linear or nonlinear functions,

Xi0 is the initial values of the dynamic system, Y i(t) is a vector of output or observation

variables with a mean zero measurement noise ei(t), g(·) is a known observation function vector

which can be linear or nonlinear, θi is an unknown dynamic parameter vector and φi is an

unknown observation parameter vector.

Stage 2. Between-subject variation:

θi = d1(θ, b1i), b1i ∼ (0, D1),

φi = d2(φ, b1i), b2i ∼ (0, D2),
(5)

where θ and φ are the population parameter vectors, b1i and b2i are random vectors quantifying

the between-subject variations.

The above mixed dynamic model is essentially a NLME model, but more complicated since

a set of differential equations, which may not have a closed-form solution, is involved. Challeng-

ing problems for the longitudinal dynamic systems include identification of unknown dynamic

parameters and statistical inference for dynamic parameters based on the data for the observed

variables. In this paper, we introduce a longitudinal dynamic system for HIV dynamics, and

suggest a Bayesian approach for dynamic parameter estimation and inference. Although we will

concentrate on HIV dynamics in the following sections, the basic concept of longitudinal dy-

namic systems and the proposed methodologies are generally applicable to any other biomedical

dynamic systems.

3. THE MODELS FOR LONG-TERM HIV DYNAMICS

3.1. Antiviral Drug Efficacy Model
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Within the population of HIV virions in human hosts, there is likely to be genetic diversity and

corresponding diversity in susceptibility to the various antiretroviral drugs. Recent treatment

strategies usually include the genotype or phenotype tests in order to determine the susceptibility

of antiretroviral agents before a treatment regimen is selected. Here we use the phenotype marker

IC50 [38, 61], which represents the drug concentration necessary to inhibit viral replication

by 50%, to quantify agent-specific drug sensitivity. Herein, we refer to this quantity as the

median inhibitory concentration. To model the within-host changes over time in IC50 due to

the emergence of new drug resistant mutations, we used the following function [27]

IC50(t) =







I0 + Ir−I0
tr

t for 0 < t < tr,

Ir for t ≥ tr,
(6)

where I0 and Ir are respective values of IC50(t) at the baseline and time point tr at which the

resistant mutations dominate. Note that we use a time-varying parameter IC50(t) to model

the susceptibility (resistance) of a virus population with a mixture of quasispecies resistant to

the drugs in antiviral regimens. The make-up of these quasispecies may vary during treatment

since drug resistant viral species may emerge if a sub-optimal dose of antiviral drugs is given

[42]. Thus, separate equations for quasispecies are not necessary under our model setting. As

examples, such functions for the ritonavir (RTV) and indinavir (IDV) drugs, respectively, are

plotted in Figure 1(a). In clinical studies such as the one to be introduced in Section 6, it is

common to measure IC50 values only at the baseline and failure time [38]. Then this simplified

function of IC50(t) may serve as a good approximation.

Place Figure 1 here

Poor adherence to a treatment regimen is one of the major causes for treatment failure

[5, 28]. Patients may occasionally miss doses, misunderstand prescription instructions or miss

multiple consecutive doses for various reasons. These deviations from prescribed dosing affect

drug exposure in predictable ways. For a time interval Tk < t ≤ Tk+1, the effect of adherence

can be defined as follows.

A(t) =







1 if all doses are taken in (Tk, Tk+1],

R if 100R% doses are taken in (Tk, Tk+1],
(7)

where 0 ≤ R < 1 with R indicating adherence rate for drugs (in our clinical study, we focus on

the two PI drugs of the prescribed regimen: RTV and IDV). Tk denotes the adherence evaluation

time at the kth clinical visit. As an example, Figure 1(b) shows the effect of adherence over

time for RTV and IDV drugs, respectively.

6



In recent years, antiretroviral drugs have been developed rapidly. The HAART has been

proven to be extremely effective in reducing the amount of virus in the blood and tissues of

infected patients. Three types of antiretroviral agents, nucleoside/non-nucleoside reverse tran-

scriptase inhibitors (RTI) and protease inhibitors (PI) have been widely used to treat HIV in-

fected patients in developed countries. Other types of antiviral agents, such as fusion inhibitors,

are also in an active development stage. In most previous viral dynamic studies, investigators

assumed that either drug efficacy was constant over treatment time [13, 16, 46, 66] or drugs had

perfect effect in blocking viral replication [24, 25, 44, 45, 48] . However, the drug efficacy may

change as concentrations of antiretroviral drugs and other factors (e.g. drug resistance) vary

during treatment [13, 46], and thus the drugs may not be perfectly effective. Also in practice,

patients’ viral load may rebound during treatment and the rebound may be associated with

resistance to antiretroviral therapy and other factors [15, 16]. To model the relationship of drug

exposure and resistance with antiviral efficacy, we use a modified Emax model [56],

γ(t) =
C12hA(t)

φIC50(t) + C12hA(t)
=

IQ(t)A(t)

φ + IQ(t)A(t)
, (8)

where IQ(t) = C12h/IC50(t) denotes the inhibitory quotient (IQ)([26, 32]; the IQ is the PK ad-

justed phenotypic susceptibility and has recently been shown to be related to antiviral responses

[26, 32]. γ(t), ranged from 0 to 1, indicates the antiviral drug efficacy (the inhibition rate of viral

replication) in a viral dynamic (response) model that will be introduced latter. C12h is the drug

concentration in plasma measured at 12 hours after a dose is taken. Note that C12h could be

replaced by other PK parameters such as the area under the plasma concentration-time curve

(AUC) or the trough level of drug concentration (Cmin). Although IC50(t) can be measured by

phenotype assays in vitro, it may not be equivalent to the IC50(t) in vivo. Parameter φ indicates

a conversion factor between IC50(t) in vitro and IC50(t) in vivo. This model is similar to the

one used by Wahl and Nowak [60]. If γ(t) = 1, the drug is 100% effective, whereas if γ(t) = 0,

the drug has no effect. Note that, if C12h, A(t) and IC50(t) can be observed from a clinical

study and φ can be estimated from clinical data, then time-varying drug efficacy γ(t) can be

estimated during the course of antiretroviral treatment.

Model (8) quantifies the antiviral drug efficacy for a single drug from the RTI or PI class.

To model the HIV dynamics under the HARRT, which usually contains three or more RTI/PI

drugs, we need to extend model (8). For a regimen containing two agents within a class (for

example, PI drugs), the combined drug efficacy of the two agents can be modeled as

γ(t) =
IQ1(t)A1(t) + IQ2(t)A2(t)

φ + IQ1(t)A1(t) + IQ2(t)A2(t)
, (9)

where IQi(t) = Ci
12h/ICi

50(t) (i = 1, 2). Similarly, we can model the combined drug efficacy of

an HAART regimen with both PI and RTI agents. Lack of adherence reduces the drug exposure,
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which can be quantified by equation (7), and thus,based on the formula (8) or (9), reduces the

drug efficacy which, in turn, can affect viral response. An example of the time course of the

drug efficacy γ(t) based on (9) with φ = 1, C1
12h = 80 and C2

12h = 50 for two PI drugs is shown

in Figure 1(c).

3.2. HIV Dynamic Model

Basic models of viral dynamics describe the interaction between cells susceptible to infection

(target cells), infected cells and virus. The mathematical details of this model have been pre-

sented elsewhere [8, 27, 39, 42, 58]. In practice, we will need to trade-off between the model

complexity and the identifiability of parameters based on available measurements from clinical

trials. If a model has too many components, it may be difficult to analyze; many of the variables

in the model may not be measurable and parameters may not be identifiable. If a model is too

simple, although viral dynamic parameters can be identified and estimated, some important

clinical factors, such as pharmacokinetics, adherence and drug resistance, and other biological

mechanisms of HIV infection cannot be incorporated. A good model should be simple enough

to incorporate available clinical data in the analysis, but detailed enough to reflect the major

biological mechanisms and components in HIV infection. In order to consider clinical factors

and biological mechanisms of HIV infection, and to flexibly deal with data analysis and identi-

fiability of parameters, we propose an extended antiviral response model. Although our model

only includes the interaction of target uninfected cells (T ), infected cells that actively produce

viruses (T ∗) and free virus (V ), this model differs from the previous models in that it includes a

time-varying parameter γ(t), which quantifies the antiviral drug efficacy. The model is expressed

in terms of the following system of differential equations under the effect of an antiretroviral

treatment

d
dt

T = λ − ρT − [1 − γ(t)]kTV,
d
dt

T ∗ = [1 − γ(t)]kTV − δT ∗,
d
dt

V = NδT ∗ − cV,

(10)

where λ represents the rate at which new T cells are created from sources within the body, such

as the thymus, ρ is the death rate of T cells, k is the infection rate of T cells infected by virus,

δ is the death rate for infected cells, N is the number of new virions produced from each of

infected cells during their life-time, and c is the clearance rate of free virions. The time-varying

parameter γ(t) denotes the antiviral drug efficacy as defined in the formula (8) or (9). If we

assume that the system of equations (10) is in a steady-state before initiating antiretroviral

treatment, then it is easy to show that the initial conditions for the system are

T0 =
c

kN
, T ∗

0 =
cV0

δN
, V0 =

λN

c
−

ρ

k
(11)
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If the regimen is not 100% effective (not perfect inhibition), the system of ordinary differential

equations can not be solved analytically. The solutions to (10) then have to be evaluated

numerically. Let β = (φ, c, δ, λ, ρ, N, k)T denote a vector of parameters, and log10(Vij(β, t))

denote the common logarithm of the numerical solution of V (t) for the ith individual at time

tj , which is the viral load measured in plasma and will be used for parameter estimation.

Similar to the analysis in [27], it can be shown from (10) that, in theory, if γ(t) > ec

(ec = 1 − cρ/kNλ is a threshold of drug efficacy) for all t, virus will be eventually eradicated.

However, if γ(t) < ec (treatment is not potent enough) or if the potency falls below ec before

the viral eradication (due to drug resistance, for example), viral load may rebound (see [27] for

a detailed discussion). Thus, the efficacy threshold ec may reflect ability of a patient’s immune

system to control viral replications, and it is important to estimate ec for each patient based on

clinical data.

4. BAYESIAN APPROACH FOR PARAMETER ESTIMATION

In order to apply the proposed mathematical models to study long-term HIV dynamics and

model viral responses, we need to resolve two important statistical problems: (i) how to estimate

the unknown parameters in HIV dynamic models, and (ii) how to conduct inference and handle

the identifiability of model parameters. It is challenging to achieve these two goals for a system of

nonlinear differential equations with time-varying parameters, because there is no closed-form

solution, and there are too many unknown parameters. In addition, among the components

involved in viral dynamics we usually only have viral load data, where as the CD4+ T cell count

data are considered too noisy to be used for dynamic parameter estimation. It is possible that

we may not be able to identify all the unknown parameters in the model (10). To deal with

the identifiability problem of parameter estimation, mathematicians usually substitute some of

the unknown parameters with their estimates from previous studies (see Perelson et al. [45]

for example). Here we investigate a Bayesian approach to tackle this difficulty. In Bayesian

terminology, the information from previous studies is regarded as prior knowledge which is

combined with clinical data to perform the statistical inference on unknown parameters. A

detailed description of the methodologies is given below.

4.1. Hierarchical Bayesian Modeling Approach

Under the longitudinal dynamic system framework, the hierarchical Bayesian approach can

be used to incorporate a prior at the population level to estimate the dynamic parameters.

We denote the number of subjects by n and the number of measurements on the ith subject

by mi. For notational convenience, let µ = (log φ, log c, log δ, log λ, log ρ, log N, log k)T , θi =

(log φi, log ci, log δi, log λi, log ρi, log Ni, log ki)
T , Θ = {θi, i = 1, · · · , n}, Θ{i} = {θl, l 6= i} and

Y = {yij , i = 1, · · · , n; j = 1, · · · , mi}. Let fij(θi, tj) = log10(Vi(θi, tj)) , where Vi(θi, tj)
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denotes the numerical solution of V (t) in the differential equations (10) for the ith subject at

time tj . The repeated measurements of common logarithmic viral load for the ith subject, yij(t),

at treatment times tj (j = 1, 2, · · · mi) can be written as

yij(tj) = fij(θi, tj) + ei(tj), i = 1, · · · n; j = 1, · · · mi (12)

where ei(t) is a measurement error with mean zero. Note that log-transformation of dynamic

parameters and viral load is used to make sure estimates of dynamic parameters to be positive

and to stabilize the variance, respectively. Then the Bayesian nonlinear mixed-effects model can

be written as the following three stages [12, 19, 63].

Stage 1. Within-subject variation:

yi = fi(θi) + ei, [ei|σ
2, θi] ∼ N (0, σ2Imi

) (13)

where yi = (yi1(t1), · · · , yimi
(tmi

))T , fi(θi) = (fi1(θi, t1), · · · , fimi
(θi, tmi

))T , ei = (ei(t1), · · · , ei(tmi
))T

and the bracket notation [A|B] denotes the conditional distribution of A given B.

Stage 2. Between-subject variation:

θi = µ + bi, [bi|Σ] ∼ N (0,Σ) (14)

Stage 3. Hyperprior distributions:

σ−2 ∼ Ga(a, b), µ ∼ N (η,Λ), Σ−1 ∼ Wi(Ω, ν) (15)

where the mutually independent Gamma (Ga), Normal (N ) and Wishart (Wi) prior distribu-

tions are chosen to facilitate computations [12, 19]. Note that the parametrization of the Gamma

and Wishart distributions is such that Ga(a, b) has mean ab and Wi(Ω, ν) has mean matrix νΩ.

The hyper-parameters a, b, η,Λ,Ω and ν are known.

Following the studies in [12, 19, 62, 63], it is shown from (13)–(15) that the full conditional

distributions for the parameters σ−2, µ and Σ−1 can be written explicitly as

[σ−2|µ,Σ−1,Θ,Y] ∼ Ga

(

a +
Σn

i=1mi

2
, A−1

)

= π(σ−2|µ,Σ−1,Θ,Y) (16)

[µ|σ−2,Σ−1,Θ,Y] ∼ N
(

B−1C, B−1
)

= π(µ|σ−2,Σ−1,Θ,Y) (17)

[Σ−1|σ−2, µ,Θ,Y] ∼ Wi
(

D−1, n + ν
)

= π(Σ−1|σ−2, µ,Θ,Y) (18)

where A = b−1 + 1
2Σn

i=1Σ
mi

j=1[yij − fij(θi, tj)]
2, B = nΣ−1 + Λ−1, C = Σ−1Σn

i=1θi + Λ−1η,

and D = Ω−1 + Σn
i=1(θi − µ)(θi − µ)T . The full conditional distribution of each θi, given the
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remaining parameters and the data, can not be written explicitly, but it can be seen that the

density function of the conditional distribution of [θi|σ
−2, µ,Σ−1,Θ{i},Y] is proportional to

exp

{

−σ−2

2
Σmi

j=1[yij − fij(θi, tj)]
2 −

1

2
(θi − µ)TΣ−1(θi − µ)

}

= π(θi|σ
−2, µ,Σ−1,Θ{i},Y)

(19)

4.2. MCMC Implementation

To carry out the Bayesian inference, it remains to specify the values of the hyper-parameters in

the prior distributions (15). In the Bayesian approach, we only need to specify the priors at the

population level which are easy to obtain from previous studies or literatures and usually are

accurate and reliable. The population prior information also helps to resolve the identifiability

problem at the individual level.

In principle, if we have reliable prior information for some of the parameters, strong priors

with small variances may be used for these parameters. For other parameters such as φ, we

may not have enough prior information or we may intend to use the available clinical data

to determine since they are critical to quantify between-subject variations in response; a non-

informative prior with large variance may be given for these parameters. In particular, one

usually chooses non-informative prior distributions for parameters of interest [9].

After we specify the model for the observed data and the prior distributions for the unknown

parameters, we can draw statistical inference for the unknown parameters based on their pos-

terior distributions. In above Bayesian modeling approach, evaluation of the required posterior

distributions in a closed-form is prohibitive. However, as indicated in Section 3.1, it is relatively

straightforward to derive either full conditional distributions for some parameters or explicit

expressions which are proportional to the corresponding full conditional distributions for other

parameters.

Under the Bayesian framework, MCMC methods enable us to draw samples from the target

distributions of interest or the posterior distributions of unknown parameters. In this paper

we combine both the Gibbs sampler and the Metropolis-Hasting (M-H) algorithm to carry out

the MCMC procedure. For more detailed discussion of this specific MCMC algorithms, please

refer to literature [3, 18, 19, 22, 35, 57, 62, 63]. In our approach, the Gibbs sampling steps

update σ−2, µ and Σ−1, while the M-H algorithm updates θi, i = 1, · · · , n. After collecting the

final MCMC samples, we are able to draw statistical inference for the unknown parameters. In

particular, we are interested in the posterior means and quantiles.

To implement the M-H algorithm, it is necessary to specify a suitable proposal density.

Several possible choices of proposal density are discussed in literatures, and a popular choice

is the multivariate normal distribution, which results in the random-walk M-H algorithm [3,

9, 22, 52]. In our implementation, the proposal density is chosen to be a multivariate normal
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distribution centered at the current value of θi, as it can be easily sampled and is symmetric

[9, 22, 52, 63]. An important issue regarding the random-walk M-H algorithm is the choice of

the dispersion of the proposal density. If the variance of the proposed density is too large, a

large proportion of proposed moves will be rejected, and the Markov chain will therefore produce

many repeats and result in inefficiency of the algorithm. On the other hand, if the variance of

the proposed density is too small, the chain will have a high acceptance rate but will move

around the parameter space slowly, again leading to inefficiency [9, 18, 52]. We will consider

this issue in the MCMC implementation.

As suggested by Geman and Geman ([23]), for example, one long run may be more efficient

with considerations of the following two points: (1) a number of initial “burn-in” simulations are

discarded, since from an arbitrary starting point it would be unlikely that the initial simulations

came from the stationary distribution targeted by the Markov chain; (2) one may only save every

kth (k being an integer) simulation samples to reduce the dependence among samples used for

parameter estimation. We are going to use these strategies in our MCMC implementation.

The iterative MCMC algorithm is outlined as follows.

Step 1. Initialize the iteration counter of the chain j = 1 and start with initial values Γ(0) =

(σ−2(0), µ(0),Σ−1(0),Θ(0))T .

Step 2. Obtain a new value Γ(j) = (σ−2(j), µ(j),Σ−1(j),Θ(j))T from Γ(j−1) through successive

generation of values:

1. σ−2(j) ∼ π(σ−2|θ(j−1),Σ−1(j−1),Θ(j−1),Y)

µ(j) ∼ π(µ|σ−2(j),Σ−1(j−1),Θ(j−1),Y)

Σ−1(j) ∼ π(Σ−1|σ−2(j), µ(j),Θ(j−1),Y)

2. For θ
(j)
i , move the chain to a new value ϕ, generated from the proposal density

q(ϕ|θ
(j−1)
i ), from θ

(j−1)
i . Evaluate the acceptance probability of the move, α(ϕ|θ

(j−1)
i )

given by (20). If the move is accepted, θ
(j)
i = ϕ. If it is not accepted, θ

(j)
i = θ

(j−1)
i

and the chain does not move.

Step 3. Change the counter from j to j + 1 and return to Step 2 until convergence is reached.

In Step 2.2 a sample u is drawn from the uniform distribution with support on (0, 1). If u ≤

α(ϕ|θ
(j−1)
i ), the proposed move is accepted and if u > α(ϕ|θ

(j−1)
i ), the move is not allowed,

where

α(ϕ|θ
(j−1)
i ) = min











1,
π(ϕ|σ−2(j), µ(j),Σ−1(j),Θ

(j−1)
{i} ,Y)

π(θ
(j−1)
i |σ−2(j), µ(j),Σ−1(j),Θ

(j−1)
{i} ,Y)











(20)

Note that the choice of the proposal density q is essentially arbitrary, although in practice a

careful choice will help the algorithm to move quickly around the parameter space. Due to the
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symmetry of q, q(ϕ|θ
(j−1)
i ) = q(θ

(j−1)
i |ϕ) and they are cancelled from fractional expression in

(20). For θi, we use a multivariate normal proposal distribution centered at the current value

with variance-covariance matrix given by an information-type matrix [3, 22, 24, 63]. In addition,

for each iteration, we need to derive fij(θi, tj) by solving the differential equations (10) so that

samples of σ−2 and θi can be drawn from (16) and (19), respectively.

In the implementation of simulation studies and the actual clinical data application below,

an informal check of convergence is conducted based on graphical techniques according to the

suggestion of Gelfand and Smith [20]. An example of graphical results will be displayed in

Section 4 below. Based on the results, we propose that, after an initial number of 30,000 burn-

in iterations, every 5th MCMC sample was retained from the next 120,000 samples. Thus, we

obtained 24,000 samples of targeted posterior distributions of the unknown parameters.

4.3. Sensitivity Analysis

As we have known, a common concern with Bayesian methods is their dependence on various

aspects of the modeling process. Possible sources of uncertainty include the prior distributions,

the number of levels in the hierarchical model and the initial values. The basic tool for in-

vestigating model uncertainty is the sensitivity analysis. That is, we simply make reasonable

modifications to the assumptions in question, recompute the posterior quantities of interest, and

see whether they have changed in a way that significantly affects the resulting interpretations

or conclusions. If the results are robust against the suspected assumptions, we can report the

results with confidence and our conclusions will be solid. However, if the results are sensitive to

the assumptions, we wish to communicate the sensitivity results and interpret the results with

caution [9]. We will investigate the sensitivity of our models in the simulation studies (example

1 below).

5. SIMULATION STUDIES

In this section, we present two simulated numerical examples to illustrate the introduced Bayesian

approach. The scenario we consider is as follows. For each example, we simulate a clinical trial

with 20 HIV infected patients in a long-term period of antiretroviral treatment. For each pa-

tient, we assume that measurements of viral load are taken at days 0, 1, 2, 4, 6, 8, 12, 14, 16,

20, 26, 32, 38, 44, 56, 64, 72, 80, 90, 100, 120, 140, 160, 180 and 200 of follow-up. The design of

this experiment is similar to an actual AIDS clinical trial that we will describe in details latter,

but here more frequent data are simulated for the purpose of easy implementation.

Because the parameters of the model (13) are not identifiable, meaning that different com-

binations of parameters lead to the same likelihood, it is impossible to obtain unique maximum

likelihood estimates of parameters based on the data. A potential advantage of Bayesian anal-

ysis over likelihood method is that if an informative prior is available, then Bayesian inferences
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can be obtained despite the fact that a model is not identifiable (from the perspective of the

likelihood) [51]. Based on this consideration, we design the following two examples to illustrate

our approach in order to handle the problems of parameter identifiability. In the first example,

it can be seen that the two parameter log c and log δ can be identified if we assume that the

other five parameters (log φ, log λ, log ρ, log N, log k) are constant. Since the classic methods of

identifiability [2, 11, 29, 34, 59] for a system of nonlinear differential equations can not be used,

and the exact identifiability checks for nonlinear differential equation models are unfortunately

not available [2], an informal check of parameter identifiability based on graphical techniques

can be used by studying samples drawn from the MCMC sampling scheme for each parameter.

We can check the k-lag serial correlation of the samples for each parameter [7, 14]. If the model

is unidentifiable and the prior distribution is not informative, the k-lag serial correlation tends

to be large even for a large k. In this case, the trace plot usually lacks randomness, i.e., the

consecutive samples move towards one direction. In practice, one can use these facts to check the

identifiability of parameters by carefully studying the samples drawn from the MCMC scheme

[21]. Sampling-based series correlation check can not only detect the possible unidentifiability,

but also shed some light on the relationship among unidentifiable parameters. In example 2, we

consider all the seven parameters to be unknown, but we assume that log φ has a non-informative

prior and the other six parameters have informative priors.

Based on the discussion in Section 4.2, the prior distribution for µ was assumed to be N (η,Λ)

with Λ being diagonal matrix. Following the idea of Han et al. [24] for prior construction, as an

example we discuss the prior construction for log δ. The prior constructions for other parameters

are similar and so are omitted here.

Ho et al. [25] reported viral dynamic data on 20 patients; the logarithm of the average

death rate of infected cells (log δ) was −1.125. Wei et al. [64] used two different models with a

group of 22 subjects to estimate death rate of infected cells and obtained log δ with –0.84 and

–1.33, respectively. Following the studies by [25, 64], Nowak et al. [40] estimated log δ = −0.934

based on 11 subjects with one possible outlying subject excluded. The individual estimates of

log δ from these studies approximately follow a symmetric normal distribution. Thus we chose

a normal distribution N (–1.0, 0.0025) as the prior for log δ (the small variance indicated that

we used an informative prior for log δ).

In this study, the values of the hyper-parameters were determined based on several studies in

literature [24, 25, 42, 43, 44, 45, 46, 58, 64]. In addition, the data for the pharmacokinetic factor

(C12h), phenotype marker (baseline and failure IC50s) and adherence as well as the baseline

viral load (V0) were taken from an AIDS clinical trial study (Section 6).

5.1. Example 1

In this example, we design an experiment to only estimate the two parameters log c and log δ
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which are identifiable in our model, and assume that the other five parameters are given as

constants whose values are (log φ, log λ, log ρ, log N, log k) = (2.5, 4.6, −2.3, 6.9, −11.0). Based

on the discussion in Section 4.2, the prior distribution for µ = (log c, log δ)T was assumed to

be N (η,Λ) with Λ being diagonal matrix. Thus, the values of hyper-parameters are chosen as

follows

a = 4.5, b = 9.0, ν = 5.0, η = (1.1, −1.0)T , Λ = diag(1000.0, 1000.0), Ω = diag(2.5, 2.5).

Note that the non-informative priors are chosen for both log c and log δ.

The true individual dynamic parameters, log ci and log δi, are generated by log ci = log c+b1i

and log δi = log δ + b2i, where log c = 1.1 and log δ = −1.0 are the true values of population

parameters, both b1i and b2i are random effects following a normal distribution with mean 0 and

standard deviation of 0.2.

Based on generated true parameters, known parameters and data (C12h, IC50 and A(t)),

the observations yij (the common logarithm of total viral load) are generated by perturbing

the solution of the differential equations (10) with a within-subject measurement error, i.e.,

yij = log10(Vij)+ei, where Vij is the numerical solution of viral load to the differential equations

(10) for the ith subject at time tj . It is assumed that the within-subject measurement error ei

is normally distributed with N (0, 0.152). A more complicated model with random measurement

errors may also be used. For example, we may use the multiplicative error or model the variance

of the error as a function of the mean [12].

We apply the introduced Bayesian approach to estimate the dynamic parameters. As dis-

cussed previously, the graphical check of identifiability in parameters based on the last 500

samples drawn from MCMC sampling scheme for both parameters log c and log δ is presented

in Figure 2. It can be seen that the consecutive samples move randomly towards different direc-

tions which indicates that MCMC sampler is not “sticky” and the two parameters are regarded

as to be identifiable.

Place Figure 2 here

Figure 3 displays the three representative individual fitted curves with generated viral load

data in log10 scale, the estimated drug efficacy (γ̂(t)) with threshold (ec), as well as observed

IC50(t) and adherence of the two PI drugs. It can be seen that the models provide a good fit

to the generated data. It is worth noting, by comparing the plots of fitted curves and estimated

drug efficacy γ̂(t), that if γ̂(t) falls below the threshold ec, viral load rebounds, and in contrast,

if γ̂(t) is above ec, the corresponding viral load does not rebound, which is consistent with our

theoretical analysis of the dynamic models [27].
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Place Figure 3 here

In Table 1, we summarize the generated true values of parameters (log c and log δ) and the

mean estimates with 40 replications for the 20 subjects, as well as the corresponding bias, which

is the difference between mean estimate and true value of parameters, and standard error (SE),

defined as the square root of mean-squared error. The percentage is based on the absolute value

of the true parameter. It can be seen from Table 1 that both bias and the SE for population

parameter estimates are very small. For individual parameter estimates, the bias is also small,

ranging from 0.001 to 0.243, and the SE (%) ranges from 0.6 to 25.7.

Place Table 1 here

In order to examine the dependence of dynamic parameter estimates on the prior distribu-

tions and initial values, we carried out the sensitivity analysis. We follow the method proposed

by Raftery and Lewis [50] to implement the MCMC sampling scheme using FORTRAN codes

and monitor several independent MCMC runs, starting from different initial values. Those runs

exhibit similar and stable behavior. An informal check of convergence diagnostics based on

graphical techniques suggested in [20] is investigated. As an example, the number of MCMC

iterations and convergence with regard to three different initial values are displayed in Figure 4.

In addition, compared with the mean vector η = (1.1, −1.0)T of prior distributions which was

used to obtain the results shown in Figure 3 and Table 1, we chose two alternative mean vectors

η = (1.3, −0.8)T (higher level) and η = (0.9, −1.2)T (lower level) of prior distributions, re-

spectively, with three sets of different initial values in the sensitivity analysis (data not shown).

We summarize the sensitivity analysis results as follows: (i) The estimated dynamic parameters

were not sensitive to both the priors and/or the initial values, and results are reasonable and

robust. (ii) When different priors and/or different initials were used, the results are similar to

those presented in Figure 3 and Table 1.

Place Figure 4 here

5.2. Example 2

We design this experiment to consider all the seven parameters to be estimated. Similar to

example 1, the prior distribution for µ = (log φ, log c, log δ, log λ, log ρ, log N, log k)T is assumed

to be N (η,Λ) with Λ being diagonal matrix. We chose the values of the hyper-parameters as
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follows:

a = 4.5, b = 9.0, ν = 8.0, η = (2.5, 1.1, −1.0, 4.6, −2.5, 6.9, −11.0)T ,

Λ = diag(1000.0, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.001),

Ω = diag(1.25, 2.5, 2.5, 2.0, 2.0, 2.0, 2.0).

We generate the true parameters using the between-subject variation model (14), θi = µ+bi

(i = 1, · · · , 20), where we assume that the population parameter vector µ = (2.5, 1.1, −1.0, 4.6,

−2.5, 6.9, −11.0)T and the random effects bi are normally distributed with mean 0 and di-

agonal standard deviation matrix of diag(0.1, 0.2, 0.2, 0.1 0.2, 0.1, 0.1). In the same way as

we did in Example 1, we generate the observations yij (the common logarithm of viral load) to

estimate the viral dynamic parameters by applying the Bayesian approach introduced in Section

4. The experiment is replicated 40 times. Similar to Example 1, the model provides a good fit

to the generated data (plots not shown here).

Table 2 summarizes the bias and standard error (SE) for population (Pop) and individual

dynamic parameters with 40 replications. Again, the percentage is based on the absolute value

of the true parameter. It can be seen from the results that the bias of estimates is very small

(for the population parameter estimates, the bias ranged from 0.001 to 0.023; for the individual

estimates, the bias ranged from 0.001 to 0.355). The standard error is reasonable (ranged from

1.5% to 15.3% for population estimates and from 0.8% to 39.7% for individual estimates).

Place Table 2 here

6. APPLICATION TO AN AIDS CLINICAL TRIAL STUDY

We apply the proposed methodology to the data from an AIDS clinical study. This study

was a Phase I/II, randomized, open-label, 24-week comparative study of the pharmacokinetic,

tolerability and antiretroviral effects of two regimens of indinavir (IDV), ritonavir (RTV), plus

two nucleoside analogue reverse transcriptase inhibitors (NRTIs) on HIV-1-infected subjects

failing PI-containing antiretroviral therapies [1]. The 44 subjects were randomly assigned to

the two treatment Arm A (IDV 800 mg q12h + RTV 200 mg q12h) and Arm B (IDV 400 mg

q12h + RTV 400 mg q12h). Out of the 44 subjects, 42 subjects are included in the analysis;

for the remaining two subjects, one was excluded from the analysis since the PK parameters

were not obtained and the other was excluded since PhenoSense HIV could not be completed

on this subject due to an atypical genetic sequence that causes the viral genome to be cut by

an enzyme used in the assay. Plasma HIV-1 RNA (viral load) measurements were taken at days

0, 7, 14, 28, 56, 84, 112, 140 and 168 of follow-up. The data for pharmacokinetic parameters

(C12h), phenotype marker (baseline and failure IC50s) and adherence from this study were also
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used in our modeling. The adherence data were determined according to pill-count data. More

detailed description of this study can be found in publication by Acosta et al. [1].

To implement the Bayesian approach, we used the same values of the hyper-parameters as

those in Example 2. The MCMC techniques consisting of a series of Gibbs sampling and M-H

algorithms were used to obtain the results presented as follows.

Figures 5 shows three individually fitted curves with observed viral load data in log10 scale,

the corresponding estimated drug efficacy function (γ̂(t)) with threshold (ec), the observed

IC50(t) and the adherence, A(t), of the two PI drugs. It can be seen that the model provides a

good fit to the observed data for these three subjects. It is also found by comparing the plots of

fitted curves and estimated drug efficacies that, in general, if γ̂(t) falls below the threshold ec,

viral load rebounds, and in contrast, if γ̂(t) is above ec, the corresponding viral load does not

rebound. This further confirms our theoretical results for the viral dynamic models [27].

Place Figure 5 here

A large between-subject variation in the estimates of all individual dynamic parameters is

observed (data not shown here). The population posterior means and the corresponding 95%

equal-tail credible intervals for the seven parameters are summarized in Table 3. It is shown

that the population estimates are 3.06 and 0.37 for c and δ, respectively, which are the most

important parameters in understanding viral dynamics. In comparison with previous studies,

our population estimate of c (3.06) is almost equal to the mean estimate of c, 3.07 in [44], and

our population estimate of δ is consistent with the mean value of δ, 0.37 in [33, 58]. However,

our population estimate of c is slightly less than the mean estimate of c, 3.1 in [46] and is greater

than the population estimate of c, 2.81, with credible interval being (1.24, 6.49) obtained by

Han et al. [24]. On the other hand, our population estimate of δ (0.37) is less than the first-

phase decay rate of 0.43 [40], 0.49 [44] and 0.5 [46]. In addition, in two separate studies by

Markowitz et al.[36] and Perelson et al.[45], the mean values of 1.0 and 0.7 for δ were obtained

by holding clearance rate c as constant with values of 23 and 3, respectively, and these two

values are substantially greater than our population estimate of 0.37 for δ. These differences

may be due to various reasons as follows. The analysis of those studies assumed that viral

replication was completely stopped by the treatment, and/or they used short-term viral load

data to fit their models. In addition, the first-phase decay rate, estimated from a biexponential

viral dynamic model [25, 44, 66] under perfect treatment assumption, is not the exact death

rate of infected cells (δ) since the current antiretroviral therapy cannot completely block viral

replication [8, 13, 46]. In this study, we estimated the death rate of infected cells (δ) directly

by accounting for the non-perfect treatment with time-varying drug efficacy. Note that we are
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unable to validate our results of the other parameter estimates as no conclusive or comparable

estimates have been published to date.

Place Table 3 here

It is also important that we can estimate the threshold of the drug efficacy (ec). The efficacy

threshold may represent how good the immune status of a patient can control viral replication.

If the efficacy threshold (ec) for a patient is small, it may indicate that this patient’s immune

response to the virus is strong and a regimen with a mild potency can keep the virus on check

for this patient. However, if the efficacy threshold (ec) for a patient is high, it indicates that

this patient needs a highly potent regimen to suppress the virus. Thus, the efficacy threshold

(ec) is important for individual patients.

7. DISCUSSION

In this paper, we propose a concept of longitudinal dynamic systems, in particular, for modeling

HIV dynamics. Our models are simplified with the main goals to retain crucial features of

HIV-1 dynamics and, at the same time, to guarantee their applicability to typical clinical data,

in particular, total viral load measurements. We investigated a hierarchical Bayesian (mixed-

effects) modeling approach to estimate dynamic parameters in the proposed mathematical model

for long-term HIV dynamics. Fitting of mathematical models using a Bayesian approach is

a powerful way in analyzing data from studies of viral dynamics. First, Bayesian modeling

involves specifying prior distributions of model parameters to perform the analysis. Thus, it

can not only incorporate the estimates of dynamic parameters from previous studies, but also

handle the identifiability problems of parameters. Secondly, the Bayesian approach allows the

fitting of complex models for viral dynamics and is more flexible than other methods such

as nonlinear least squares (NLS) method. Thirdly, the graphical output of simulation-based

Bayesian algorithms provides both informative diagnostic aids and easily understood inferential

summaries.

We have presented two simulation examples and an actual AIDS clinical trial study to illus-

trate how the Bayesian procedures can be applied to HIV dynamic studies. Both the population

and individual dynamic parameters can be estimated from the hierarchical Bayesian modeling

approach. For simulation studies, it was seen that the models provided a good fit to the sim-

ulated data. The bias for both population and individual dynamic parameters is very small,

and the SE (%) of the estimates is reasonable. One thus might claim that both population and

individual parameters would be identifiable by only providing the population prior information

under a framework of the hierarchical Bayesian model based on our simulation studies. For the
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actual AIDS clinical trial data set, the proposed model fitted the clinical data reasonably well

for most subjects in our study, although the fitting for a few subjects (less than 10%) was not

completely satisfactory due to unusual viral load response patterns, inaccurate measurements of

drug exposure and/or adherence for these subjects. For example, the measurement of adherence

may not reflect actual adherence profiles for the individual subject.

Most of previous studies have assumed perfect drug effect [25, 36, 40, 44, 45, 46, 65] or

imperfect constant drug effect [15, 46, 65] to estimate dynamic parameters with short-term

viral load data. These assumptions contributed to the limitations of those studies which might

result in inaccuracy of dynamic parameter estimation. Compared with those studies, our model

proposed in this paper has the following features: (i) time-varying drug efficacy during long-term

treatment; (ii) more reasonable biological interpretation; (iii) incorporating drug concentration,

adherence and resistance in the model; and (iv) good fit to the observed long-term viral load

data (whole data). Thus, based on this model, the results of estimated dynamic parameters

should be more reliable and reasonable to interpret long-term HIV dynamics.

As indicated previously, it was interesting to note that, by comparing the results of fitted

curves and estimated drug efficacy γ̂(t) (obtained in combination with the clinical data C12h,

A(t), IC50(t) and the estimated values of φ), if γ̂(t) falls below the threshold ec, viral load

rebounds, and in contrast, if γ̂(t) is above ec, the corresponding viral load does not rebound.

Thus, the threshold of drug efficacy ec may reflect ability of the immune system of a patient for

controlling virus replications. It is therefore important to estimate ec for each patient based on

clinical data.

Although the analysis presented here used a simplified model which appeared to perform well

in capturing and explaining the observed patterns, and characterizing the biological mechanisms

of HIV infection under relatively complex clinical situations, our model is however limited in

several ways. Our mathematical model (10) is a simplified model among many variations of

viral dynamic models [8, 42, 46]. We did not consider the compartments of productively infected

cells, long-lived and latently infected cells separately [45]. Instead we pooled all the infected cell

populations together. The virus compartment was not further decomposed into infectious virions

and non-infectious virions as in Perelson et al. [44]. Thus, different mechanisms of NRTI and PI

drug effects were not modeled. In fact, we only considered the PI drug effects in the drug efficacy

model (9) since the information of NRTI drugs was not collected in our study and the effect of

NRTI drugs was considered less important compared to the PI drugs. We modeled the drug

resistance using the phenotype IC50 values instead of modeling genotype viral species separately

[42]. One of the main reasons is that genotypic assays is hard to interpret due to the large number

of mutations that lead to resistance of antiretroviral drugs. Although more elaborated models

with consideration of more infected cell and virus compartments, more detailed drug effects,

and specific drug resistant viral species may provide more accurate descriptions for the long-
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term HIV dynamics, they may give rise to the identifiability problems of model parameters due

to the complexity of the models, and thus limit the usefulness of these models. The trade-off

between the complexity and applicability of HIV dynamic models should be considered, and

further studies on this issue are definitely needed. Nevertheless, these limitations would not

offset the major findings from our modeling approach.

We assumed that the distribution of the random effects in (14) is normal. However, due

to the nature of AIDS clinical data, it is possible that data may contain outlying individuals

and, thus, may result in a skewed distribution of individual parameters, i.e. the random effects

may not follow a normal distribution. As Wakefield [63] suggested, a t distribution may be used

which is more robust to outlying individuals than the normal distribution. We plan to address

this issue and report results in future studies.

In summary, the mechanism-based dynamic model is powerful and efficient to establish the

relationship between antiviral response and drug exposure and drug susceptibility, although

some biological assumptions have to be made. The fitting of a model specified as a set of

differential equations to data is routinely done in many fields (in particular, pharmacokinetics

and pharmacodynamics which are closely associated with the analysis of clinical data considered

in this paper). Our hope is that this work might stimulate the investigation of more realistic

models to analyze data from AIDS clinical trials with antiviral treatment which, in turn, would

help to better understand the biological mechanisms of HIV infection, to study the pathogenesis

of AIDS progression, to guide development of antiviral treatment strategies and to take into

account the roles of clinical factors in antiviral activities. We also expect that the proposed

concept of longitudinal dynamic systems can be applied to other biological processes.
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Table 1: The true values and mean estimates of population (Pop) and individual dynamic

parameters with 40 replications as well as the corresponding bias and standard error (SE),

defined as the square root of mean-squared error. The percentage of SE is based on the

absolute value of the true parameter.

True value Mean estimate Bias SE (%)

log c log δ log c log δ log c log δ log c log δ

Pop 1.100 -1.000 1.107 -1.006 0.007 -0.006 3.02 3.00

Sub1 0.658 -0.778 0.684 -0.767 0.026 0.011 17.1 21.6

Sub2 0.851 -1.216 0.865 -1.125 0.014 0.091 22.4 22.3

Sub3 1.287 -0.833 1.153 -0.778 -0.134 0.055 12.8 9.6

Sub4 1.244 -0.875 1.303 -0.922 0.059 -0.047 10.4 17.0

Sub5 1.004 -0.704 1.206 -0.890 0.202 -0.186 27.1 12.0

Sub6 1.046 -1.095 1.056 -1.077 0.010 0.018 4.8 10.1

Sub7 1.032 -1.173 1.144 -1.117 0.112 0.056 12.6 19.2

Sub8 1.038 -1.332 1.126 -1.397 0.088 -0.065 19.9 15.0

Sub9 1.534 -0.848 1.523 -0.806 -0.011 0.042 2.3 34.5

Sub10 1.073 -1.037 1.077 -1.040 0.004 -0.003 4.7 25.7

Sub11 1.295 -1.080 1.152 -0.997 -0.143 0.083 13.4 14.1

Sub12 1.064 -1.101 1.115 -1.127 0.051 -0.026 7.2 10.5

Sub13 1.048 -0.928 1.054 -1.008 0.006 -0.080 6.1 17.8

Sub14 1.35 -0.934 1.352 -0.935 0.002 -0.001 0.6 6.3

Sub15 1.201 -1.101 1.197 -1.078 -0.004 0.023 7.5 15.4

Sub16 1.235 -0.855 1.230 -0.908 -0.005 -0.053 1.4 17.5

Sub17 0.853 -1.135 1.096 -1.210 0.243 -0.075 20.7 18.3

Sub18 1.024 -1.251 1.042 -1.131 0.018 0.120 6.3 18.4

Sub19 1.196 -0.962 1.144 -0.930 -0.052 0.032 7.6 16.9

Sub20 1.171 -0.834 1.165 -0.899 -0.006 -0.065 2.1 20.0
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Table 2: The bias and standard error (SE), defined as the square root of mean-squared error, for population (Pop) and individual

dynamic parameters with 40 replications. The percentage of SE is based on the absolute value of the true parameter.

log φ log c log δ log λ log ρ log N log k

Bias SE(%) Bias SE(%) Bias SE(%) Bias SE(%) Bias SE(%) Bias SE(%) Bias SE(%)

Pop 0.023 15.3 0.014 11.1 -0.008 13.1 -0.009 4.3 -0.010 9.1 -0.011 7.6 0.001 1.5

Sub1 0.284 21.1 -0.147 32.8 0.156 19.9 0.036 7.1 0.069 8.1 0.077 7.0 -0.242 4.1

Sub2 0.331 14.7 0.125 32.3 0.109 20.6 0.080 6.1 0.174 9.7 -0.112 5.8 0.089 1.6

Sub3 -0.121 11.0 -0.208 37.4 0.080 9.4 -0.073 5.5 0.052 5.2 -0.037 5.3 0.202 3.1

Sub4 -0.035 10.5 -0.206 31.1 -0.002 12.6 0.073 3.6 0.098 7.4 -0.144 5.2 -0.053 2.2

Sub5 0.125 24.3 -0.198 39.7 -0.048 23.3 0.010 6.1 -0.103 13.0 -0.116 9.1 -0.426 6.8

Sub6 -0.019 16.1 0.170 33.5 -0.061 16.9 0.053 4.0 0.236 10.6 0.154 5.5 0.085 3.2

Sub7 0.097 11.6 0.159 38.4 0.073 18.1 -0.158 5.4 -0.259 13.4 -0.171 3.9 0.243 3.4

Sub8 0.256 12.6 0.076 10.1 -0.128 19.3 -0.022 5.0 -0.234 13.8 -0.047 6.0 -0.141 2.4

Sub9 -0.108 9.0 0.027 31.9 0.063 22.8 -0.015 4.1 -0.244 12.8 0.021 4.2 0.001 1.3

Sub10 0.080 10.2 0.151 35.6 -0.108 33.5 0.118 4.2 0.185 8.4 0.079 3.3 0.041 2.1

Sub11 0.012 7.2 -0.075 22.9 0.010 16.5 0.075 6.8 0.194 9.3 -0.303 6.1 0.032 2.1

Sub12 0.269 31.1 -0.163 17.4 0.106 12.5 0.078 8.8 -0.117 15.2 -0.213 10.3 0.016 6.1

Sub13 0.153 12.6 0.093 17.2 -0.231 44.0 0.122 3.7 -0.120 7.4 -0.043 2.9 -0.013 2.2

Sub14 -0.053 9.8 0.063 27.1 0.049 16.3 0.103 4.8 0.159 8.7 0.085 4.8 0.028 2.2

Sub15 0.145 13.9 0.079 39.1 0.041 18.3 0.107 3.7 0.131 7.3 -0.008 4.9 -0.042 1.5

Sub16 0.044 5.3 -0.355 35.7 0.118 15.9 -0.103 4.3 0.117 7.0 -0.199 4.0 0.001 0.8

Sub17 0.295 20.7 -0.025 30.2 0.076 19.7 0.022 7.5 -0.120 10.1 -0.009 7.7 -0.185 4.0

Sub18 0.178 13.2 0.134 17.2 -0.128 32.5 0.152 5.4 0.130 6.5 0.183 4.7 -0.023 1.9

Sub19 0.047 9.6 -0.036 33.0 0.059 18.0 -0.065 4.9 0.218 10.1 -0.016 5.2 0.114 2.5

Sub20 0.177 11.8 -0.189 23.9 0.159 26.2 -0.061 5.3 0.091 5.8 -0.214 7.5 -0.017 2.0
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Table 3: A summary of the estimated posterior means (PM) of population parameters

and the corresponding 95% equal-tail credible intervals, where LCI and RCI denote the

left and right credible limits of 95% credible intervals.

φ c δ λ ρ N k

PM 24.9 3.06 0.37 98.1 0.081 975.6 0.000017

LCI 10.6 2.79 0.33 89.1 0.073 886.3 0.000016

RCI 57.7 3.37 0.41 107.9 0.089 1074.2 0.000018
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Figure 1: (a) The median inhibitory concentration curve [IC50(t)]; (b) the time-course of

adherence [A(t)]; (c) the time-course of drug efficacy [γ(t)].
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Figure 2: Trace plot to informally check parameter identifiability based on the last 500

samples drawn from the MCMC sampling scheme in Example 1.
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Figure 3: Individual fitted curves with generated viral load data in log10 scale, drug

efficacy with threshold (ec), as well as IC50(t) and adherence of the two PI drugs (IDV

and RTV) for the three representative subjects from Example 1.
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Figure 4: The number of MCMC iterations and convergence diagnostics with respect to

three different initial values for Example 1.

34



Time (day)

lo
g1

0(
R

N
A

)

0 50 100 150 200

1.
0

2.
0

3.
0

Subject 1

Time (day)

lo
g1

0(
R

N
A

)
0 50 100 150 200

1
2

3
4

Subject 2

Time (day)

lo
g1

0(
R

N
A

)

0 50 100 150 200

1
2

3
4

5

Subject 3

Time (day)

D
ru

g 
ef

fic
ac

y

0 50 100 150 200

0.
92

0.
94

0.
96

ec

Time (day)

D
ru

g 
ef

fic
ac

y

0 50 100 150 200

0.
82

0.
86

0.
90

0.
94

ec

Time (day)
D

ru
g 

ef
fic

ac
y

0 50 100 150 200

0.
93

0.
95

0.
97 ec

Time (day)

IC
50

0 50 100 150 200

5.
0

5.
4

5.
8

6.
2

IDV
RTV

Time (day)

IC
50

0 50 100 150 200

4
6

8
10

14 IDV
RTV

Time (day)

IC
50

0 50 100 150 200

2
3

4
5

6
7

IDV
RTV

Time (day)

A
dh

er
en

ce

0 50 100 150 200

0.
96

0.
98

1.
00

IDV
RTV

Time (day)

A
dh

er
en

ce

0 50 100 150 200

0.
85

0.
90

0.
95

1.
00

IDV
RTV

Time (day)

A
dh

er
en

ce

0 50 100 150 200

0.
80

0.
90

1.
00

IDV
RTV

Figure 5: Individual fitted curves with observed viral load measurements in log10 scale,

drug efficacy with threshold (ec), as well as IC50(t) and adherence of the two PI drugs

(IDV and RTV) for the three representative subjects.

35


