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Appendix A: Technical Proofs

Some assumptions are stated as follows:

(B1) For κ = max06j6K(τj+1−τj), there exists a constant M > 0, such that κ/min06j6K(τj+1−

τj) 6 M and max06j6K | τj+1−τj
τj−τj−1

− 1| = o(1).

(B2) For fixed design points, ti ∈ [a, b] for i = 1, · · · , n, assume that there exists a distribution

function Q(t) with a corresponding positive continuous design density ρ(t) such that, for

the empirical distribution of (t1, . . . , tn), Qn(t), we have supt∈[a,b] |Qn(t)−Q(t)| = o(K−1).

Moreover, there exist two constants 0 < c1 < c2 < ∞ such that c1 6 ρ(t) 6 c2 for all

t ∈ [a, b].

(B3) The number of knots K = o(n).

(B4) f(t, x,β) is a continuous function of β for β ∈ Ωβ, where Ωβ is a compact subset of Rd.

(B5) For ρ defined in Assumption B2, ρ(t) ∈ C[a, b].

(B6) X(t) ∈ χ, where χ ⊂ Cν+1[a, b] with ν > 2.

(B7) The weight w(.) is a bounded and non-negative function on the interval [a, b]. Further, w(.)

has a bounded first-order derivative.

(B8) E{w(t)[f(t,X(t),β) − f(t,X(t),β0)]
2} = 0 if and only if β = β0, where E[g(t)] is the

expectation of function g(t) with respect to t in the case of random design and the integral∫ b
a g(t)dQ(t) for function g(t) in the case of fixed design.

(B9) The first and second partial derivatives, ∂f(t,x,β)
∂β

, ∂2f(t,x,β)
∂x∂β

, and ∂2f(t,x,β)

∂β∂βT , exist, are contin-

uous and uniformly bounded for all t ∈ [a, b], β ∈ Ωβ, x ∈ χ, and

∣∣∣ ∂
∂β

f(t, x1,β)−
∂

∂β
f(t, x2,β)

∣∣∣6 C|x1 − x2|ζ

for some 0 < ζ 6 1.
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(B10) The first partial derivatives ∂
∂t
f(t, x,β) and ∂

∂x
f(t, x,β) are continuous and uniformly

bounded for t ∈ [a, b], β ∈ Ωβ and x ∈ χ.

(B11) Kq < 1 with Kq = (K + ν + 1− q)(λc̃1)
1/(2q)n−1/(2q) for some constant c̃1.

(B12) Kq > 1 for Kq defined in (B11).

(B13) All partial derivatives of f{t,X,Υ,β} up to order p with respect to t, X and Υ exist and

are continuous. The derivatives of input variables Υ(t) up to pth-order with respect to t

exist and are continuous.

Some notations are required. Let ∥a∥ be the Euclidean norm of a vector a; ∥A∥∞ =

max
16i6m

n∑
j=1

|aij| be the supremum norm of an m × n matrix A, where aij is the (i, j)-th

element of A; A⊗2 = AAT for a matrix A; Cr[a, b] be the class of functions with r-

order continuous derivatives on the interval [a, b]; W q[a, b] be the Sobolev space of order

q, i.e. W q[a, b] = {f : f has q − 1 absolutely continuous dirivatives,
∫ b
a{f (q)}2dx < ∞};

∥f∥∞ = supt |f(t)| be the supremum norm of a function f . Denote GK,n = ZTZ/n,

HK,n = GK,n + λDq/n and H = G + λDq/n with G =
∫ b
a N ν+1(t)N

T
ν+1(t)ρ(t)dt. Denote

c as a general constant.

Lemma 1: (i) Under Assumptions B1-B3 and B11, if X(.) ∈ Cν+1[a, b] with ν > 1, then

for any i = 0, 1, · · · , ν − 1,

E[X̂(i)(t)]−X(i)(t) = bi(t, ν + 1) + di(t) + o(κν+1−i) + o(λn−1κ−q−i)

= O(κν+1−i) +O(λn−1κ−q−i)

and

Var[X̂(i)(t)] =
σ2

n
NT

ν+1−i(t)∆i(G+
λ

n
Dq)

−1G(G+
λ

n
Dq)

−1∆T
i N ν+1−i(t)

+o(n−1κ−2i−1)

= O(n−1κ−2i−1).
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(ii) Under Assumptions B1-B3 and B12, if X(.) ∈ W q[a, b] with q > 2, then for any

i = 0, 1, · · · , q − 2,

E[X̂(i)(t)]−X(i)(t) = bi(t, q) + di(t) + o(κq−i) + o((λ/n)1/2κ−i)

= O(κq−i) +O((λ/n)1/2κ−i)

and

Var[X̂(i)(t)] =
σ2

n
NT

ν+1−i(t)∆i(G+
λ

n
Dq)

−1G(G+
λ

n
Dq)

−1∆T
i N ν+1−i(t)

+o(n−1κ−2i(λ/n)−1/(2q))

= O(n−1κ−2i(λ/n)−1/(2q)),

where

bi(t, ν + 1) = − X(ν+1)(t)

(ν + 1− i)!

K∑
j=0

I[τj ,τj+1](t)(τj+1 − τj)
ν+1−iBν+1−i(

t− τj
τj+1 − τj

),

and

di(t) = −λ

n
NT

ν+1−i(t)∆i(G+ λDq/n)
−1Dqξ,

with Bj(.) denoting the jth Bernoulli polynomial (see Ghizzetti and Ossicini, 1970), and

ξ = (ZTZ)−1ZTSX for SX = {SX(t1), · · · , SX(tn)}T , where SX(t) = NT
ν+1(t)δ ∈ S(ν+1, τ)

is the best L∞ approximation to the true value of function X(t).

Proof of Lemma 1: From the expressions (8) and (9) , we have

X̂(i)(t) = NT
ν+1−i(t)∆i(Z

TZ + λDq)
−1ZTY = NT

ν+1−i(t)∆iH
−1
K,n

1

n
ZTY .

From the definition of GK,n and HK,n, we have H
−1
K,n−G−1

K,n = −λ
n
H−1

K,nDqG
−1
K,n. It follows

that

X̂(i)(t) = NT
ν+1−i(t)∆iG

−1
K,n

1

n
ZTY +NT

ν+1−i(t)∆i(H
−1
K,n −G−1

K,n)
1

n
ZTY

= X̂
(i)
reg(t)−

λ

n
NT

ν+1−i(t)∆iH
−1
K,nDqG

−1
K,n

1

n
ZTY



4 Biometrics, September 2011

with X̂
(i)
reg(t) = NT

ν+1−i(t)∆iG
−1
K,n

1
n
ZTY from the expression (5) in Zhou and Wolfe (2000).

Then

E[X̂(i)(t)]−X(i)(t)

= [S
(i)
X (t)−X(i)(t)] + E[X̂

(i)
reg(t)− S

(i)
X (t)] (A.1)

− λ

n
NT

ν+1−i(t)∆iH
−1
K,nDqG

−1
K,n

1

n
ZT (X − SX + SX),

where X = {X(t1), · · · , X(tn)}T and S
(i)
X (t) is the ith-order derivative of SX(t) with SX(t)

and SX defined in Lemma 1.

From Lemma 5.1 and Theorem 3.1 of Zhou and Wolfe(2000), it holds thatX(i)(t)−S
(i)
X (t) =

−bi(t, ν + 1) + o(κν+1−i) and E[X̂
(i)
reg(t) − S

(i)
X (t)] = o(κν+1−i) for X(.) ∈ Cν+1[a, b], and

X(i)(t)− S
(i)
X (t) = −bi(t, q) + o(κq−i) and E[X̂

(i)
reg(t)− S

(i)
X (t)] = o(κq−i) for X(.) ∈ W q[a, b].

Now we consider the third component of (A.1). In the first step, we use similar arguments

to those in the proof of Theorem 2 in Claeskens, Krivobokova and Opsomer(2009) and the

definition of ξ = (ZTZ)−1ZTSX in Proposition 1, then we have

−λ

n
NT

ν+1−i(t)∆iH
−1
K,nDqG

−1
K,n

1

n
ZTSX

= −λ

n
NT

ν+1−i(t)∆iH
−1
K,nDqξ

= −λ

n
NT

ν+1−i(t)∆iH
−1
K,n∆

T
q WS

(q)
X (ϱ)

= −λ

n
NT

ν+1−i(t)∆iH
−1∆T

q WS
(q)
X (ϱ)

−λ

n
NT

ν+1−i(t)∆i(H
−1
K,n −H−1)∆T

q WS
(q)
X (ϱ)

= −λ

n
NT

ν+1−i(t)∆iH
−1Dqξ − λ

n
NT

ν+1−i(t)∆i(H
−1
K,n −H−1)∆T

q WS
(q)
X (ϱ)

= di(t)−
λ

n
NT

ν+1−i(t)∆i(H
−1
K,n −H−1)∆T

q WS
(q)
X (ϱ),

whereW = diag{∑j+ν−q
l=j

∫ τl+1
τl

Nj,q(t)dt} and ϱ = (ϱ−ν+q, · · · , ϱK)T with some ϱj ∈ [τj, τj+ν+1−q]

for j = −ν + q, · · · , K.

In the second step, we claim that −λ
n
NT

ν+1−i(t)∆i(H
−1
K,n −H−1)∆T

q WS
(q)
X (ϱ) is of negli-

gible asymptotic order for both Kq < 1 and Kq > 1. In fact, from Lemma A2 and the proof
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of Theorem 2 in Claeskens, Krivobokova and Opsomer(2009), we have ∥H−1
K,n −H−1∥∞ =

o(κ−1) for Kq < 1 and o(κ−1(1 + K2q
q )−1) for Kq > 1, ∥W∥∞ = O(κ), ∥∆q∥∞ = O(κ−q),

∥∆i∥∞ = O(κ−i), and ∥S(q)
X (ϱ)∥∞ = O(1). Then it follows that for Kq < 1,

λ

n
NT

ν+1−i(t)∆i(H
−1
K,n −H−1)∆T

q WS
(q)
X (ϱ) = o(λn−1κ−(q+i)),

and for Kq > 1,

λ

n
NT

ν+1−i(t)∆i(H
−1
K,n −H−1)∆T

q WS
(q)
X (ϱ)

= o(λn−1κ−(q+i)(1 +K2q
q )−1)

= o((λ/n)1/2κ−iKq
q (1 +K2q

q )−1)

= o((λ/n)1/2κ−i),

since Kq
q (1 +K2q

q )−1 < 1/2 for Kq > 1.

In the third step, we also claim that −λ
n
NT

ν+1−i(t)∆iH
−1
K,nDqG

−1
K,n

1
n
ZT (X − SX) is of

negligible asymptotic order for both Kq < 1 and Kq > 1. In fact, From Result R2 in

Claeskens, Krivobokova and Opsomer(2009), it follows thatG−1
K,n

1
n
ZT (X−SX) = o(κv+1) for

X(.) ∈ Cν+1[a, b] and o(κq) for X(.) ∈ W q[a, b]. From Lemma A1 in Claeskens, Krivobokova

and Opsomer(2009), ∥H−1
K,n∥∞ = O(κ−1) for Kq < 1 and O(κ−1(1 + K2q

q )−1) for Kq > 1.

Moreover, we have ∥Dq∥∞ = O(κ−2q+1) from Lemma 6.2 in Cardot(2000). So for Kq < 1,

we obtain that

λ

n
NT

ν+1−i(t)∆iH
−1
K,nDqG

−1
K,n

1

n
ZT (X − SX)

= o(λn−1κν+1−2q−i)

= o(λn−1κ−(q+i)κν+1−q)

= o(λn−1κ−(q+i)),

because of ν > q, and for Kq > 1, we obtain that

λ

n
NT

ν+1−i(t)∆iH
−1
K,nDqG

−1
K,n

1

n
ZT (X − SX)
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= o(λn−1κ−q−i(1 +K2q
q )−1)

= o((λ/n)1/2κ−i).

Thus, for Kq < 1,

E[X̂(i)(t)]−X(i)(t) = bi(t, ν + 1) + di(t) + o(κν+1−i) + o(λn−1κ−q−i)

= O(κν+1−i) +O(λn−1κ−q−i),

and for Kq > 1,

E[X̂(i)(t)]−X(i)(t) = bi(t, q) + di(t) + o(κq−i) + o((λ/n)1/2κ−i)

= O(κq−i) +O((λ/n)1/2κ−i).

Now, we consider the variance

Var[X̂(i)(t)] =
σ2

n
NT

ν+1−i(t)∆iH
−1
K,nGK,nH

−1
K,n∆

T
i N ν+1−i(t).

From Result R1 and Lemma A2 in Claeskens, Krivobokova and Opsomer(2009), we have

that for Kq < 1,

Var[X̂(i)(t)] =
σ2

n
NT

ν+1−i(t)∆iH
−1GH−1∆T

i N ν+1−i(t) + o(n−1κ−2i−1)

= O(n−1κ−2i−1),

and for Kq > 1,

Var[X̂(i)(t)] =
σ2

n
NT

ν+1−i(t)∆iH
−1GH−1∆T

i N ν+1−i(t)

+o(n−1κ−2i−1(1 +K2q
q )−2)

=
σ2

n
NT

ν+1−i(t)∆iH
−1GH−1∆T

i N ν+1−i(t)

+o(n−1κ−2i(λ/n)−1/(2q)Kq(1 +K2q
q )−2)

=
σ2

n
NT

ν+1−i(t)∆iH
−1GH−1∆T

i N ν+1−i(t)

+o(n−1κ−2i(λ/n)−1/(2q))

= O(n−1κ−2i(λ/n)−1/(2q)),
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since Kq(1 +K2q
q )−2 6 Kq

q (1 +K2q
q )−1 < 1/2 for Kq > 1.

Lemma 2: (i) Under Assumptions B1-B3 and B11, if X(.) ∈ Cν+1[a, b] with ν > 1, then for

any i = 0, 1, · · · , ν − 1, the mean squared error(MSE), MSE[X̂(i)(t)] = E[X̂(i)(t)−X(i)(t)]2,

satisfies

MSE[X̂(i)(t)] = O(κ2(ν+1−i)) +O(λ2n−2κ−2(q+i)) +O(n−1κ−2i−1).

Moreover, for K ∼ cn1/(2ν+3) and λ = O(nγ) with γ 6 (ν + 2 − q)/(2ν + 3), the P-

spline estimator of X(i)(t) attains the optimal rate of convergence for X(.) ∈ Cν+1[a, b]

with MSE[X̂(i)(t)] = O(n−2(ν+1−i)/(2ν+3)).

(ii) Under Assumptions B1-B3 and B12, if X(.) ∈ W q[a, b] with q > 2, then for any

i = 0, 1, · · · , q − 2,

MSE[X̂(i)(t)] = O(κ2(q−i)) +O((λ/n)κ−2i) +O(n−1κ−2i(λ/n)−1/(2q)).

Moreover, for λ ∼ cn1/(2q+1) and K ∼ cnς with ς > 1/(2q + 1), the P-spline estimator of

X(i)(t) attains the optimal rate of convergence for X(.) ∈ W q[a, b] with MSE[X̂(i)(t)] =

O(n−2(q−i)/(2q+1)).

Proof of Lemma 2: The order of the mean square errors can be derived from Propo-

sition 1 directly. Then we can verify the optimal rates of convergence by using κν+1−i >

λn−1κ−q−i and κ2(ν+1−i) = n−1κ−2i−1 for Kq < 1, and κq−i 6 (λ/n)1/2κ−i and (λ/n)κ−2i =

n−1κ−2i(λ/n)−1/(2q) for Kq > 1.

Lemma 3: (i) Under Assumptions B1-B3 and B11, if X(.) ∈ Cν+1[a, b] with ν > 1, for

K ∼ cnς with ς > 1/(2ν + 3), and λ = O(nγ) with γ 6 (ν + 2 − q)/(2ν + 3), then for any

fixed t ∈ [a, b] and any i = 0, 1, · · · , ν − 1,

X̂(i)(t)−X(i)(t)− bi(t, ν + 1)− di(t)√
Var[X̂(i)(t)]

d→ N(0, 1).
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(ii) Under Assumptions B1-B3 and B12, if X(.) ∈ W q[a, b] with q > 2, for λ ∼ cnγ with

γ 6 1/(2q + 1), and K ∼ cnς with ς > 1/(2q + 1), then for any fixed t ∈ [a, b] and any

i = 0, 1, · · · , q − 2,

X̂(i)(t)−X(i)(t)− bi(t, q)− di(t)√
Var[X̂(i)(t)]

d→ N(0, 1).

Proof of Lemma 3: For Kq < 1, if K ∼ cnς with ς > 1/(2ν + 3) and λ = O(nγ) with

γ 6 (ν + 2− q)/(2ν + 3), then by Lemma 1(i), for any i = 0, 1, · · · , ν − 1,

∥E[X̂(i)(t)]−X(i)(t)− bi(t, ν + 1)− di(t)∥∞ = o(n− ν+1−i
2ν+3 ),√

Var[X̂(i)(t)] = O(n− ν+1−i
2ν+3 ).

It follows that

E[X̂(i)(t)]−X(i)(t)− bi(t, ν + 1)− di(t)√
Var[X̂(i)(t)]

= o(1).

Therefore it is enough to show that

X̂(i)(t)− E[X̂(i)(t)]√
Var[X̂(i)(t)]

d→ N(0, 1).

By (9), we have

X̂(i)(t)− E[X̂(i)(t)] = NT
ν+1−i(t)∆iH

−1
K,nZ

T 1

n
e =

n∑
j=1

Λjej,

where Λj(t) = NT
ν+1−i(t)∆iH

−1
K,nN ν+1(tj)/n. To verify that the Lindeberg-Feller condition

holds, it suffices to show that

max16j6n(Λ
2
j) = o(

n∑
j=1

Λ2
j) = o(Var[X̂(i)(t)]). (A.2)

From Lemma A1 in Claeskens, Krivobokova and Opsomer(2009), ∥H−1
K,n∥∞ = O(κ−1).

Similar to the proof of Theorem 3.3 in Zhou and Wolfe (2000), we have

Λ2
jn

2 = NT
ν+1−i(t)∆iH

−1
K,nN ν+1(tj)N

T
ν+1(tj)H

−1
K,n∆

T
i N ν+1−i(t)

= tr[N ν+1−i(t)N
T
ν+1−i(t)∆iH

−1
K,nN ν+1(tj)N

T
ν+1(tj)H

−1
K,n∆

T
i ]

6 πν+1−itr[∆
T
i ∆iH

−1
K,nN ν+1(tj)N

T
ν+1(tj)H

−1
K,n]

6 πν+1−i∥∆T
i ∥∞∥∆i∥∞tr[H−2

K,nN ν+1(tj)N
T
ν+1(tj)]
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6 πν+1−i∥∆i∥2∞∥H−2
K,n∥∞tr[N ν+1(tj)N

T
ν+1(tj)]

6 πν+1−iO(κ−2i−2)
K+ν+1∑

l=1

N2
l,ν+1(tj)

= O(κ−2i−2),

where

πν+1−i = maxt∈[a,b]{φ(t) : φ(t) is the maximum eigenvalue of N ν+1−i(t)N
T
ν+1−i(t)} 6 1.

Similarly, for Kq > 1, if λ ∼ cnγ with γ 6 1/(2q + 1), and K ∼ cnς with ς > 1/(2q + 1),

from ∥H−1
K,n∥∞ = O(κ−1(1 +K2q

q )−1), we have

Λ2
jn

2 = O(κ−2i−2(1 +K2q
q )−2)

= O(κ−2i−1(λ/n)−1/(2q)Kq(1 +K2q
q )−2)

= O(κ−2i−1(λ/n)−1/(2q)),

since Kq(1 +K2q
q )−2 < 1/2. Hence (A.2) holds for both Kq < 1 and Kq > 1, and the proof

of Lemma 3 is completed.

Lemma 4: (i) Under Assumptions B1-B3 and B11, if X(.) ∈ Cν+1[a, b] with ν > 1, for

K ∼ cnς with ς > 1/(2ν + 3), and λ = O(nγ) with γ 6 (ν + 2 − q)/(2ν + 3), then for any

fixed t ∈ [a, b] and any i = 0, 1, · · · , ν − 1,

∥X̂(i)(t)−X(i)(t)∥∞ = O(κν+1−i) +O(λn−1κ−q−i) +O(κ−i− 1
2n− 1

2 ).

(ii) Under Assumptions B1-B3 and B12, if X(.) ∈ W q[a, b] with q > 2, for λ ∼ cnγ with

γ 6 1/(2q + 1), and K ∼ cnς with ς > 1/(2q + 1), then for any fixed t ∈ [a, b] and any

i = 0, 1, · · · , q − 2,

∥X̂(i)(t)−X(i)(t)∥∞ = O(κq−i) +O((λ/n)1/2κ−i) +O(n−1/2κ−i(λ/n)−1/(4q)).

Proof of Lemma 4: From Lemma 3(i), for any t ∈ [a, b], we have

Var−
1
2 (X̂(i)(t))[X̂(i)(t)−X(i)(t)− bi(t, ν + 1)− di(t)] = O(1).

Then by Lemma 1(i), Lemma 4(i) holds. The proof of Lemma 4(ii) is similar.
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Remark A1: Note that Claeskens, Krivobokova and Opsomer(2009) have established Lemma

1 and Lemma 2 for i = 0, i.e., the case of the original functionX(t) and its estimate X̂(t). The

results of Lemmas 1-4 are similar to those for other smoothing methods, such as smoothing

splines (Rice and Rosenblatt, 1983), local polynomial (Fan and Gijbels, 1996) and regression

splines (Zhou, Shen and Wolfe, 1998; Zhou and Wolfe, 2000).

Remark A2: Lemma 2 shows that the order of the optimal number of knots for P-splines

does not depend on i. Such results are similar to that for regression splines given in Remark

1 of Zhou and Wolfe(2000). It provides a clue on how to choose the optimal number of knots

for X̂(i)(t).

Remark A3: Similar to the setup for regression splines in Zhou, Shen and Wolfe(1998) and

Zhou and Wolfe(2000), in this article we suppose that the knots for P-slines are asymptoti-

cally equally-spaced, the design density is continuous, and the order of the spline equals the

assumed order of the unknown regression function. These assumptions may be relaxed by

the way for regression splines in Huang(2003a,b).

Lemma 5: For all the discretization methods given in Section 2.2, we have

F (ti, X(ti), X(ti+1),β) = f(ti, X(ti),β) +O(h), i = 1, · · · , n− 1.

Proof of Lemma 5: We only need to verify this result for the RDB method. For k2 defined

in Section 2.2, under Assumption B10, by the mean value theorem, we have

k2 = f(ti + hi/2, X(ti) + hik1/2,β)

= f(ti, X(ti),β) +
∂f(t∗, x∗,β)

∂t

hi

2
+

∂f(t∗, x∗,β)

∂x

hik1
2

= f(ti, X(ti),β) +O(hi)

= f(ti, X(ti),β) +O(h)
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where t∗ lies between ti and ti + hi/2, x
∗ lies between X(ti) and X(ti) + hik1/2. Similarly,

we have k3 = f(ti, X(ti),β) +O(h) and k4 = f(ti, X(ti),β) +O(h). Then

F (ti, X(ti), X(ti+1),β) =
k1
6

+
k2
3

+
k3
3

+
k4
6

= f(ti, X(ti),β) +O(h).

Lemma 6: Under Assumptions B1-B3 and B11, if X(.) ∈ Cν+1[a, b] with ν > 1, for

K ∼ cnς with ς > 1/(2ν + 3), and λ = O(nγ) with γ 6 (ν + 2 − q)/(2ν + 3), for a

continuous function g(t),
∫ b
a g(t)[X̂(t) − X(t)]dt is asymptotically normal with mean µX =∫ b

a g(t)E[X̂(t) − X(t)]dt = O(κv+1) = o(n−1/2) and variance ΣX =
∫ b
a

∫ b
a g(s)Cov[X̂(s) −

X(s), X̂(t)−X(t)]gT (t)dsdt = O(1/n).

Proof of Lemma 6: By the Delta-method(van der Vaart and Wellner, 1996, p.377) and

Lemma 3(i),
∫ b
a g(t)[X̂(t)−X(t)]dt is asymptotically normal with mean as

µX =
∫ b

a
g(t)E[X̂(t)−X(t)]dt,

and variance as

ΣX =
∫ b

a

∫ b

a
g(s)Cov[X̂(s)−X(s), X̂(t)−X(t)]gT (t)dsdt.

From Lemma 1(i), µX = O(κv+1) = o(n−1/2) and

ΣX =
σ2

n

∫ b

a

∫ b

a
g(s)NT

ν+1(s)(G+
λ

n
Dq)

−1G(G+
λ

n
Dq)

−1N ν+1(t)g
T (t)dsdt.

Now, we consider the order of the variance as follows

∥
∫ b

a

∫ b

a
g(s)NT

ν+1(s)(G+
λ

n
Dq)

−1G(G+
λ

n
Dq)

−1N ν+1(t)g
T (t)dsdt∥∞

6 c∥
∫ b

a
NT

ν+1(t)(G+
λ

n
Dq)

−1G(G+
λ

n
Dq)

−1N ν+1(t)dt∥∞

= ctr[
∫ b

a
NT

ν+1(t)(G+
λ

n
Dq)

−1G(G+
λ

n
Dq)

−1N ν+1(t)dt]

= c
∫ b

a
tr[NT

ν+1(t)(G+
λ

n
Dq)

−1G(G+
λ

n
Dq)

−1N ν+1(t)]dt

= c
∫ b

a
tr[(G+

λ

n
Dq)

−1G(G+
λ

n
Dq)

−1N ν+1(t)N
T
ν+1(t)]dt

= c
∫ b

a
tr[(G−1 + o(κ−1))N ν+1(t)N

T
ν+1(t)]dt

6 c∥G−1∥∞tr[
∫ b

a
N ν+1(t)N

T
ν+1(t)ρ(t)dt]
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6 c∥G−1∥∞∥G∥2 = O(κ−1)O(κ) = O(1),

then ΣX = O(1/n).

In the following proofs of Propositions 1-2, for simplicity, we suppose that f does not

depend on t and use the notation f(X(t),β) to replace f(t,X(t),β). We also remove the

dependence in t for F . Of course, the proof is straightforward in the non-autonomous case.

Proof of Proposition 1: If we denote ϵi = X̂(ti+1)−X̂(ti)
ti+1−ti

− F (X(ti), X(ti+1),β0), then

1
n

∑n−1
i=1 w(ti)ϵ

2
i = O(an) with an = b2n + hbn + h2 for bn = κν + λn−1κ−q−1 + κ− 3

2n− 1
2 . This

result can be verified by the Taylor expansion and the expression (10), i.e., for 0 < h 6 1,

under Assumptions B7 and B13, as follows

1

n

n−1∑
i=1

w(ti)ϵ
2
i =

1

n

n−1∑
i=1

w(ti)[
X̂(ti+1)− X̂(ti)

ti+1 − ti
− F (X(ti), X(ti+1),β0)]

2

=
1

n

n−1∑
i=1

w(ti)[X̂
′(ti) +O(h)− X(ti+1)−X(ti)

ti+1 − ti
+O(hp)]2

=
1

n

n−1∑
i=1

w(ti)[X̂
′(ti) +O(h)−X ′(ti) +O(h) +O(hp)]2 (A.3)

=
1

n

n−1∑
i=1

w(ti)[X̂
′(ti)−X ′(ti) +O(h)]2

6 c∥X̂ ′(t)−X ′(t)∥2∞ +O(h)∥X̂ ′(t)−X ′(t)∥∞ +O(h2)

= O(b2n + hbn + h2) = O(an).

Then we have

1

n
Sn(β) =

1

n

n−1∑
i=1

w(ti)[
X̂(ti+1)− X̂(ti)

ti+1 − ti
− F (X̂(ti), X̂(ti+1),β)]

2

=
1

n

n−1∑
i=1

w(ti)[F (X(ti), X(ti+1),β0) + ϵi − F (X̂(ti), X̂(ti+1),β)]
2

=
1

n

n−1∑
i=1

w(ti)[F (X(ti), X(ti+1),β0)− F (X̂(ti), X̂(ti+1),β)]
2 (A.4)

+
2

n

n−1∑
i=1

w(ti)ϵi[F (X(ti), X(ti+1),β0)− F (X̂(ti), X̂(ti+1),β)]

+
1

n

n−1∑
i=1

w(ti)ϵ
2
i .
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For the second term of (A.4), by the Cauchy-Schwarz inequality, if β ̸= β0, then

2

n

∣∣∣n−1∑
i=1

w(ti)ϵi[F (X(ti), X(ti+1),β0)− F (X̂(ti), X̂(ti+1),β)]
∣∣∣

6 c[
n−1∑
i=1

ϵ2i ]
1
2{ 1

n

n−1∑
i=1

[F (X(ti), X(ti+1),β0)− F (X̂(ti), X̂(ti+1),β)]
2}

1
2 .

So the second term of (A.4) is bounded by a product of a lower term than that of the first

term of (A.4) and op(1). Now we consider the first term of (A.4), which can be decomposed

as

1

n

n−1∑
i=1

w(ti)[F (X(ti), X(ti+1),β0)− F (X̂(ti), X̂(ti+1),β)]
2

=
1

n

n−1∑
i=1

w(ti)[F (X(ti), X(ti+1),β0)− F (X(ti), X(ti+1),β)]
2

+
1

n

n−1∑
i=1

w(ti)[F (X(ti), X(ti+1),β)− F (X̂(ti), X̂(ti+1),β)]
2 (A.5)

+
2

n

n−1∑
i=1

w(ti)[F (X(ti), X(ti+1),β0)− F (X(ti), X(ti+1),β)]

×[F (X(ti), X(ti+1),β)− F (X̂(ti), X̂(ti+1),β)].

By Assumption B10 and Lemma 4(i), we know that the second term of (A.5) is bounded as

follows

1

n

n−1∑
i=1

w(ti)[F (X(ti), X(ti+1),β)− F (X̂(ti), X̂(ti+1),β)]
2

6 c∥X(t)− X̂(t)∥2∞ sup
x∈χ

∣∣∣ ∂
∂x

f(t, x,β)
∣∣∣2

6 c′c2n

with cn = κν+1 + λn−1κ−q + κ− 1
2n− 1

2 for some constant c′. By a similar argument, we note

that, if β ̸= β0, the third term of (A.5) is bounded by O(cn). For the first term of (A.5),

from Lemma 5 and the strong law of large number, if β ̸= β0, we have

lim
n→∞

1

n

n−1∑
i=1

w(ti)[F (X(ti), X(ti+1),β0)− F (X(ti), X(ti+1),β)]
2

= lim
n→∞

1

n

n−1∑
i=1

w(ti)[f(X(ti),β0)− f(X(ti),β)]
2

= E{w(t)[f(X(t),β0)− f(X(t),β)]2},
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a.s. Combining all three terms of (A.5), we can see that the first term of (A.4) is dominat-

ed by the term E{w(t)[f(X(t),β0) − f(X(t),β)]2}. Denote S(β) = E{w(t)[f(X(t),β0) −

f(X(t),β)]2}. Then we have lim
n→∞

Sn(β)
n

− S(β) = 0, a.s.

For any probability measure Q, let Fn be the set {Sn(β)
n

−S(β) : β ∈ Ωβ} and N1(ϵ,Q,Fn)

be the covering number of the class Fn in the probability measure Q, as given in Pol-

lard(1984,page 25). Under Assumption B4, using the similar arguments to those in the

proof of Theorem 3.1 of Xue, Miao and Wu(2010), we have supQN1(ϵ,Q,Fn) 6 C(1
ϵ
)d

for 0 < ϵ < 1, where C is some constant. Then by Theorem II.37 in Pollard(1984),

supβ |
Sn(β)

n
− S(β)| → 0, a.s., under Pβ0

.

Next, from Assumption B8, we know that β0 is the unique minimum point of S(β). Since

β0 is an interior point of Ωβ, it follows that the first-order derivative ∂S(β)
∂β

of S(β) at β0

equals to zero and the second-order derivative ∂2S(β)

∂β∂βT of S(β) at β0 is positive definite. By

Assumptions B2 and B9, the second-order derivative of S(β) in a small neighborhood of β0

is bounded away from 0 and ∞. Then the second-order Taylor expansion of S(β) gives that

there exists a constant 0 < C < ∞ such that |S(β̂n)− S(β0)| > C∥β̂n − β0∥2. Moreover,

0 6 S(β̂n)− S(β0) = S(β̂n)−
Sn(β̂n)

n
+

Sn(β̂n)

n
− S(β0)

6 S(β̂n)−
Sn(β̂n)

n
+

Sn(β0)

n
− S(β0)

6 2 sup
β

|Sn(β)

n
− S(β)| → 0, a.s.

Thus ∥β̂n − β0∥ → 0, a.s., i.e. β̂n strongly converges to β0 when n is large.

Proof of Proposition 2: Under Assumption B9, by the Landau-Kolmogorov inequality

between different derivatives of a function and Lemma 5, we have

∥∂F (X̂(ti), X̂(ti+1),β)

∂β
− ∂f(X̂(ti),β)

∂β
∥∞

6 C∥∂
2F (X̂(ti), X̂(ti+1),β)

∂β∂βT − ∂2f(X̂(ti),β)

∂β∂βT ∥1/2∞ ∥F (X̂(ti), X̂(ti+1),β)− f(X̂(ti),β)∥1/2∞

6 C ′∥F (X̂(ti), X̂(ti+1),β)− f(X̂(ti),β)∥
1
2∞
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= O(h
1
2 )

for two constants C and C ′, where ∥g(β)∥∞ = supβ |g(β)| is the supremum norm of a function

g . For β̂n, it satisfies
∂Sn(β̂n)

∂β
= 0. Then from Lemma 5 and the proof of Proposition 1, it

follows that

− 1

n

∂Sn(β̂n)

∂β

=
1

n

n−1∑
i=1

w(ti)[
X̂(ti+1)− X̂(ti)

ti+1 − ti
− F (X̂(ti), X̂(ti+1), β̂n)]

∂F (X̂(ti), X̂(ti+1), β̂n)

∂β

=
1

n

n−1∑
i=1

w(ti)[X̂
′(ti)− f(X̂(ti), β̂n) +O(h)][

∂f(X̂(ti), β̂n)

∂β
+O(h

1
2 )]

=
1

n

n−1∑
i=1

w(ti)
∂f(X̂(ti), β̂n)

∂β
[X̂ ′(ti)−X ′(ti) + f(X(ti),β0)− f(X̂(ti),β0)

+f(X̂(ti),β0)− f(X̂(ti), β̂n)] +O(h
1
2 )o(1)

=
1

n

n−1∑
i=1

w(ti)
∂f(X̂(ti), β̂n)

∂β
[X̂ ′(ti)−X ′(ti) +

∂f(X̃i,β0)

∂X
(X(ti)− X̂(ti))

+
∂f(X̂(ti), β̃)

∂βT (β0 − β̂n)] + o(h
1
2 ),

with X̃i being some point between X(ti) and X̂(ti), and β̃ being some point between β0 and

β̂n. o(h
1
2 ) = o(n−1/2), since h = O(n−1). So we obtain an asymptotic expression for β̂n −β0

as follows

1

n

n−1∑
i=1

w(ti)
∂f(X̂(ti), β̂n)

∂β

∂f(X̂(ti), β̃)

∂βT (β̂n − β0)

=
1

n

n−1∑
i=1

w(ti)
∂f(X̂(ti), β̂n)

∂β
{[X̂ ′(ti)−X ′(ti)]

−∂f(X̃i,β0)

∂X
[X̂(ti)−X(ti)]}+ o(n− 1

2 ).

Denote J∗ = E[w(t){∂f(X(t),β0)
∂β

}⊗2],

Pn =
1

n

n−1∑
i=1

w(ti)
∂f(X̂(ti), β̂n)

∂β
[(X̂ ′(ti)−X ′(ti))−

∂f(X̃i,β0)

∂X
(X̂(ti)−X(ti)],

and

Tn =
∫ b

a
w(t)ρ(t)

∂f(X(t),β0)

∂β
[(X̂ ′(t)−X ′(t))− ∂f(X(t),β0)

∂X
(X̂(t)−X(t)]dt.
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From Proposition 1 and Lemma 4(i), we have

1

n

n−1∑
i=1

w(ti)
∂f(X̂(ti), β̂n)

∂β

∂f(X̂(ti), β̃)

∂βT → J∗.

For fixed X̂ ′(t) and X ′(t), from the weak law of large number, Pn − Tn → 0 in probability.

So β̂n − β0 = J−1
∗ Tn + op(n

−1/2). Further, applying integration by parts to Tn, we have

∫ b

a
w(t)ρ(t)

∂f(X(t),β0)

∂β
[X̂ ′(t)−X ′(t)]dt

= {w(t)ρ(t)∂f(X(t),β0)

∂β
[X̂(t)−X(t)]}|ba

−
∫ b

a

d

dt
[w(t)ρ(t)

∂f(X(t),β0)

∂β
][X̂(t)−X(t)]dt.

If w(a) = w(b) = 0, then

β̂n − β0 = −J−1
∗

∫ b

a
A(t)[X̂(t)−X(t)]dt+ op(n

− 1
2 ). (A.6)

with A(t) = w(t)ρ(t)∂f(X(t),β0)
∂β

∂f(X(t),β0)
∂X

+ d
dt
[w(t)ρ(t)∂f(X(t),β0)

∂β
]. From Lemma 6, the right

side of (A.6) is asymptotically normal with mean as

µ1 = −J−1
∗

∫ b

a
A(t)E[X̂(t)−X(t)]dt = O(κv+1) = o(n−1/2)

and variance as

Σ1 = J−1
∗ {

∫ b

a

∫ b

a
A(s)Cov[X̂(s)−X(s), X̂(t)−X(t)]AT (t)dsdt}J−1

∗

=
σ2

n
J−1
∗

[ ∫ b

a

∫ b

a
A(s)NT

ν+1(s)(G+
λ

n
Dq)

−1G(G+
λ

n
Dq)

−1N ν+1(t)A
T (t)dsdt

]
J−1
∗

= O(1/n).

Thus for w(a) = w(b) = 0, if Kq < 1, K ∼ cnς with ς > 1/(2ν + 3), and λ = O(nγ) with

γ 6 (ν + 2− q)/(2ν + 3), then

√
n(β̂n − β0)

d→ N(0,Σ∗
1) with Σ∗

1 = nΣ1. (A.7)

Obviously, Σ∗
1 = O(1), since Σ1 = O(1/n). This rate of convergence is consistent with that

of Theorem 4.2 in Bickel and Ritov(2003).
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If w(a) ̸= 0 or w(b) ̸= 0, we have

β̂n − β0

= J−1
∗ {w(t)ρ(t)∂f(X(t),β0)

∂β
[X̂(t)−X(t)]}|ba +Op(n

− 1
2 )

= J−1
∗ {B(b)[X̂(b)−X(b)]−B(a)[X̂(a)−X(a)]}+Op(n

− 1
2 )

= J−1
∗ [B(b)NT

ν+1(b)−B(a)NT
ν+1(a)](Z

TZ + λDq)
−1ZTY +Op(n

− 1
2 )

=
1

n
J−1
∗ MH−1

K,nZ
TY +Op(n

− 1
2 )

with B(t) = w(t)ρ(t)∂f(X(t),β0)
∂β

and M = B(b)NT
ν+1(b)−B(a)NT

ν+1(a). Similar to the proof

of Lemma 3(i), β̂n − β0 is asymptotic normal with mean as

µ2 = J−1
∗

{
B(b)E[X̂(b)−X(b)]−B(a)E[X̂(a)−X(a)]

}
and variance as

Σ2 =
σ2

n
J−1
∗ M(G+

λ

n
Dq)

−1G(G+
λ

n
Dq)

−1MTJ−1
∗ .

Now, we consider the orders of this mean and variance. From Lemma 1(i), µ2 = O(κν+1) and

Σ2 = O(n−1κ−1). In order to ensure that the asymptotic bias of β̂n is zero, the assumption

Kn−1/(2ν+3) → ∞ is required. Thus for w(a) ̸= 0 or w(b) ̸= 0, if Kq < 1, K ∼ cnς with

ς > 1/(2ν + 3), and λ = O(nγ) with γ 6 (ν + 2− q)/(2ν + 3), then

√
nκ(β̂n − β0)

d→ N(0,Σ∗
2) with Σ∗

2 = nκΣ2. (A.8)

Obviously, Σ∗
2 = O(1), since Σ2 = O(n−1κ−1).
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Appendix B: Additional Simulation Studies and Results

In all the simulations in the main text, the weight function w(ti) in the objective function

(15) is assumed to be a constant. To evaluate the effect of the weight function, we per-

formed additional simulations based on Model (19) in Simulation Example II by assuming

w(ti) = sin(πti/5). This weight function is selected to satisfy the boundary conditions for

the asymptotic results as suggested by Brunel (2008). Similarly we used parameter values

(a, b, c) = (1.5, 1, 2) and initial values (R(0), P (0)) = (0, 1) to generate the observations at

every time interval of 0.2 in [0,5] giving 26 observations. The measurement error standard

deviations were taken as (σ1, σ2) ∈ {(0.02, 0.01), (0.05, 0.03)}. For each simulation case, 500

runs were replicated. We report the AREs for the estimates of different methods in Table 1

below.

The results show considerable improvement in the ARE for all the methods. Comparing

different methods, the EDB method again has the largest ARE. The LW method performed

better than the TDB method for the cases of small noise. For the larger noise cases, the

TDB method has the smallest ARE. The RDB method was slightly worse than the LW and

the TDB method for most of the cases.

[Table 1 about here.]

We performed more simulations for the case of unequally-distributed observation time

points suggested by one of the referees. Here we report the results from one case that is also

based on the non-linear ODE model (19). We used parameter values (a, b, c) = (1.5, 1, 2) and

initial values (R(0), P (0)) = (0, 1) to generate the observations at unequally-spaced intervals:

early frequent measurements with every interval of 0.2 in [0,2.5] and sparse measurements

with every interval of 0.4 in [2.5,5]. The measurement error standard deviations were taken as

(σ1, σ2) ∈ {(0.02, 0.01), (0.05, 0.03)}. For each simulation case, 500 runs were replicated. We



20 Biometrics, September 2011

report the AREs for the estimates of different methods for different parameters in Table 2

below.

From this table, we can see a similar trend as in the case of equally-spaced observations

(Example II in the main text). The results confirm that the EDB method produces the largest

AREs for all the simulation cases. The LW method seems to be somewhere in between the

EDB and the TDB. The RDB method was worse than the TDB method and was better than

the LW method in some cases and worse in others. The TDB method again gave the best

results and has been stable in all the simulations.

[Table 2 about here.]
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Table 1
Evaluation of the weight effect: Average relative errors in percentage (sample mean± sample standard deviation) for
the estimates of the parameters obtained from 500 replications (note that true a = 1.5, b = 1, and c = 2 and n = 26

for Example II).

Parameter (σ1,σ2) LW EDB TDB RDB

a (0.02,0.01) 3.17 9.57 3.39 3.71
(1.50±0.06) (1.36±0.06) (1.50±0.06) (1.53±0.07)

(0.05,0.03) 8.33 13.88 7.53 10.27
(1.44±0.14) (1.40±0.23) (1.46±0.13) (1.57±0.21)

b (0.02,0.01) 3.73 9.70 3.97 4.25
(1.00±0.05) (0.90±0.04) (1.00±0.05) (1.02±0.05)

(0.05,0.03) 9.78 15.57 8.81 11.88
(0.95±0.11) (0.93±0.18) (0.97±0.10) (1.05±0.16)

c (0.02,0.01) 0.63 1.58 0.69 0.66
(2.00±0.02) (1.97±0.02) (2.00±0.02) (2.00±0.02)

(0.05,0.03) 1.85 1.93 1.84 1.78
(2.00±0.05) (1.98±0.04) (1.99±0.05) (2.01±0.04)
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Table 2
Simulation Results for Unequally-Distributed Observation Time Points: Average relative errors in percentage

(sample mean± sample standard deviation) for the estimates of the parameters obtained from 500 replications (note
that true a=1.5, b=1, and c=2).

par (σ1,σ2) LW EDB TDB RDB

a (0.02,0.01) 10.64 16.37 7.05 11.58
(1.36±0.12) (1.25±0.08) (1.42±0.09) (1.33±0.09)

(0.05,0.03) 20.29 20.45 14.88 17.66
(1.24±0.23) (1.21±0.17) (1.32±0.19) (1.27±0.19)

b (0.02,0.01) 12.81 17.69 8.52 13.24
(0.89±0.09) (0.82±0.07) (0.94±0.08) (0.87±0.07)

(0.05,0.03) 24.26 23.09 17.89 20.82
(0.79±0.18) (0.79±0.15) (0.86±0.16) (0.82±0.16)

c (0.02,0.01) 3.36 9.97 1.27 6.99
(1.93±0.03) (1.80±0.02) (1.98±0.02) (1.86±0.02)

(0.05,0.03) 6.07 11.25 3.34 8.24
(1.89±0.08) (1.77±0.05) (1.94±0.06) (1.84±0.06)


