Evaluating the Impact of Safe Routes to School Infrastructure on Active Commuting in Central Texas Schools

Deanna Hoelscher, PhD, RDN, LD, CNS, FISBNPA

Yuzi Zhang, PhD, MS; Leigh Ann Ganzar, DrPH; Kevin Lanza, PhD; Deborah Salvo, PhD; Sarah Bentley, MPH and Adriana Pérez, PhD

Active Living Conference 2025 March 18, 2025

STREETS Study Overview

Study Aim: To determine effects of SRTS infrastructure changes on population-level active commuting to school (ACS) over time.

Study Design & Data Collection

- Serial cross-sectional sample; longitudinal study
- Data collection
 - January 2019-May 2024 each spring and fall semester (11 waves of potential data collection)
 - 92 elementary schools
 - 69 Infrastructure schools (municipal-funded)
 - 23 Comparison schools (surrounding school districts, no infrastructure funding)
 - No data collection for Wave 4 (fall 2020) and Wave 5 (spring 2021) due to COVID-19

Analytic Sample

	Spring 2019	Fall 2019	Spring 2020	Fall 2020	Spring 2021	Fall 2021	Spring 2022	Fall 2022	Spring 2023	Fall 2023	Spring 2024	
				COVID-19 no data collection								
Wave	1	2	3	4	5	6	7	8	9	10	11	•

- The baseline measurement (1st measured wave) for participating schools ranged from Wave 1 (Spring 2019) to Wave 7 (Spring 2020)
- To control for confounding effects, only schools with the baseline at Wave 1 or Wave 2 were included in the analysis:
 - 84 elementary schools (91%)
 - 64 infrastructure schools
 - 20 comparison schools

Variables and Measures

School-level ACS

- SRTS tally recorded by teachers
- Grade 3-5 classrooms
- Tuesday, Wednesday, and Thursday: AM & PM
- School-level total ACS trips:
 - Number of trips to/from schools made by walking or biking
 - Summed across classrooms; average of percentages in each school

SRTS infrastructure

- Intention-to-treat analysis: Infrastructure schools vs. comparison schools
 - Expose to SRTS infrastructure vs. not exposed to SRTS infrastructure
- Policy implementation analysis: Infrastructure implementation status in infrastructure schools at each wave
 - Pre, during, and post-construction

Analysis

- Mixed-effect linear models using R and SAS, with the school as the level of analysis, controlling for school-level covariates
 - School-level characteristics:
 - Texas Education Agency academic year 2018
 - Total school enrollment, number of girls, % race/ethnicity, community type (urban versus suburban), % economically disadvantaged students, % students with limited English proficiency.
 - Daily weather information:
 - NOAA Local Climatological Data.
 - Average daily weather measurements across Tuesday, Wednesday, and Thursday:
 - Mean daily maximum dry bulb temperature, mean daily precipitation, mean daily average wind speed

Participating School Characteristics

Infrastructure vs. Comparison

#5#

Total school enrollment

558

656

The number of girls

271

321

% major urban communities

86%

15%

% economically disadvantaged students

58%

38%

% limited English proficiency students

37%

17%

Number of measured waves

6.2

4.6

School-level ACS over time: Analysis 1

Analysis 1: "Intention-to-Treat" policy intervention

Infrastructure schools N=64

- Municipal bond funding in Central Texas
- Exposed to SRTS construction: infrastructure status at each wave

Comparison schools
N=20

- Similar to infrastructure schools located in central Texas
- No municipal funding
- Not exposed to SRTS construction

Post (at least 1 construction done)

School-level ACS over time: Intention-to-Treat policy intervention in schools (Analysis 1)

School-level ACS over time: Analysis 2

Analysis 1: "Intention-to-Treat" policy intervention

Analysis 2: Policy implementation in infrastructure schools

Infrastructure schools N=64

- Municipal bond funding in Central Texas
- Exposed to SRTS construction: infrastructure status at each wave

Comparison schools
N=20

- Similar to infrastructure schools located in central Texas
- No municipal funding
- Not exposed to SRTS construction

Post (at least 1 construction done)

School-level ACS over time: Policy implementation in infrastructure schools (Analysis 2)

Discussion

- SRTS infrastructure negatively affects ACS in the short-term because of construction periods.
- Attaining positive effects in ACS after urban transformations may require longer follow-up periods.
- Infrastructure changes are essential, but other promotional, educational, and cultural supports are needed to promote and sustain behavior change.
- ACS behaviors changed after COVID-19, but longer follow-up is needed to see if these changes persist.

Acknowledgements

Team members

- Dr. Adriana Pérez
- Dr. Leigh Ann Ganzar
- Dr. Kevin Lanza
- Dr. Shelton Brown
- Dr. Deb Salvo
- Sarah Bentley, MPH
- Dr. Yuzi Zhang
- Dr. Katie Burford
- Dr. Kaitlyn Swinney

- Thank you to the City of Austin SRTS department and study participants.
- This research was funded by the Eunice Kennedy Shriver National Institute of Child Health & Human Development, grant number R01 HD097669, and support was provided by the Michael and Susan Dell Foundation through the Michael & Susan Dell Center for Healthy Living.

Thank you!

Deanna Hoelscher, PhD, RDN, LD, CNS, FISBNPA

- John P. McGovern Professor in Health Promotion and Austin Regional Dean
- UTHealth Houston, School of Public Health in Austin
- Michael & Susan Dell Center for Healthy Living
- Deanna.M.Hoelscher@uth.tmc.edu

Healthy children in a healthy world.

STRATEGIC PLAN GOALS

Number of Participating Schools & School-level %ACS

	Infrastructure Schools, N=64					Comparison Schools, N=20				
Wave	N	Total	To School	From School	N	Total	To School	From School		
1	60	13.1 (9.7)	10.3 (7.7)	16.0 (12.7)	6	14.4 (10.9)	13.3 (11.4)	17.6 (11.1)		
2	54	14.4 (12.0)	12.9 (10.5)	15.9 (14.4)	19	14.4 (9.6)	11.6 (8.4)	17.3 (11.3)		
3	44	13.6 (10.5)	10.2 (8.5)	16.9 (13.5)	15	14.3 (10.4)	10.4 (9.1)	18.3 (12.8)		
4	No data collection during COVID 10									
5	No data collection during COVID-19									
6	45	13.8 (10.2)	12.0 (9.4)	15.5 (11.4)	9	15.2 (12.0)	12.4 (11.4)	18.0 (12.7)		
7	41	12.3 (10.5)	10.0 (8.6)	14.6 (12.8)	12	11.9 (9.6)	8.4 (7.2)	15.5 (12.3)		
8	41	13.2 (10.7)	11.8 (10.0)	14.6 (11.7)	8	9.0 (7.3)	5.8 (5.4)	12.6 (9.8)		
9	35	12.7 (10.4)	11.6 (10.7)	13.8 (10.6)	8	11.4 (9.3)	9.0 (9.4)	13.8 (9.7)		
10	42	14.3 (12.8)	12.7 (12.1)	15.9 (14.2)	8	17.6 (11.2)	14.8 (10.3)	20.7 (12.4)		
11	37	13.0 (12.7)	11.1 (11.7)	15.0 (14.0)	7	13.6 (8.5)	9.4 (6.6)	17.8 (11.0)		

School-level ACS over Time: Policy intervention*Construction status

