The Future of Quitting: Emerging mHealth Strategies for Smoking Cessation

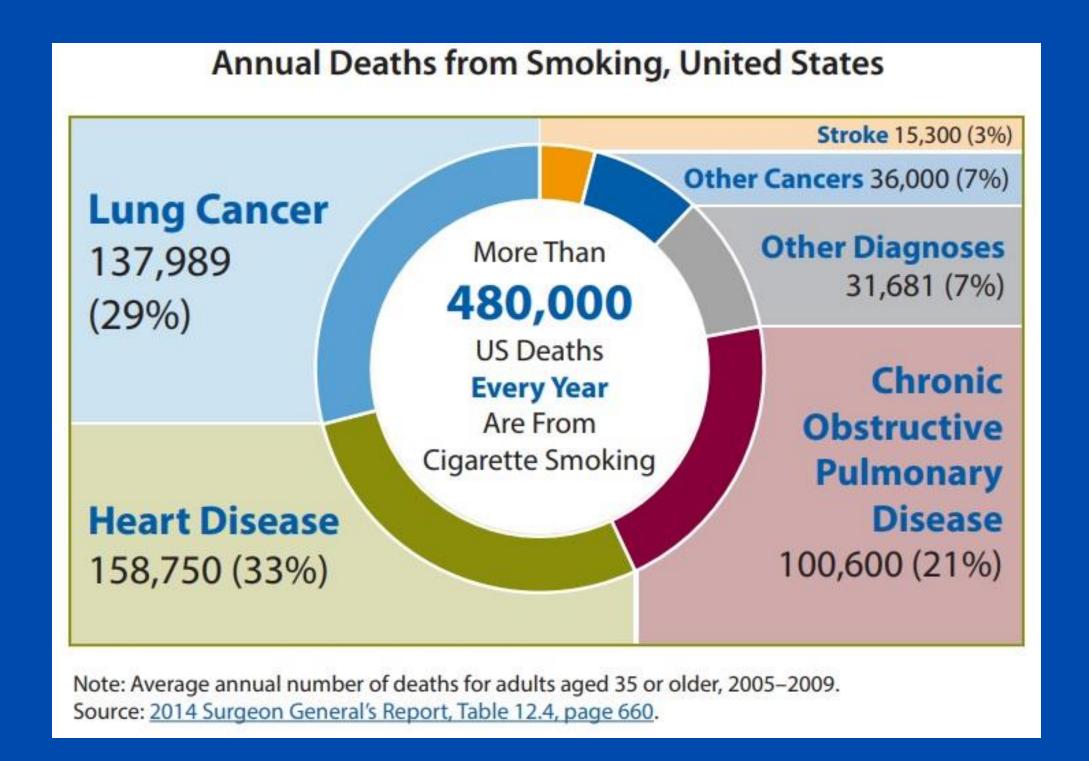
Emily Hébert, DrPH Assistant Professor, Health Promotion and Behavioral Sciences UTHealth School of Public Health in Austin Michael & Susan Dell Center for Healthy Living

The Tobacco Problem

Cigarette smoking remains the leading cause of preventable death in the U.S.

13.7% of U.S. adults are current smokers

4.6% of high school students reported smoking in the past 30 days



Most smokers want to quit.

More than half of smokers report having made a quit attempt in the past year.

55.1%

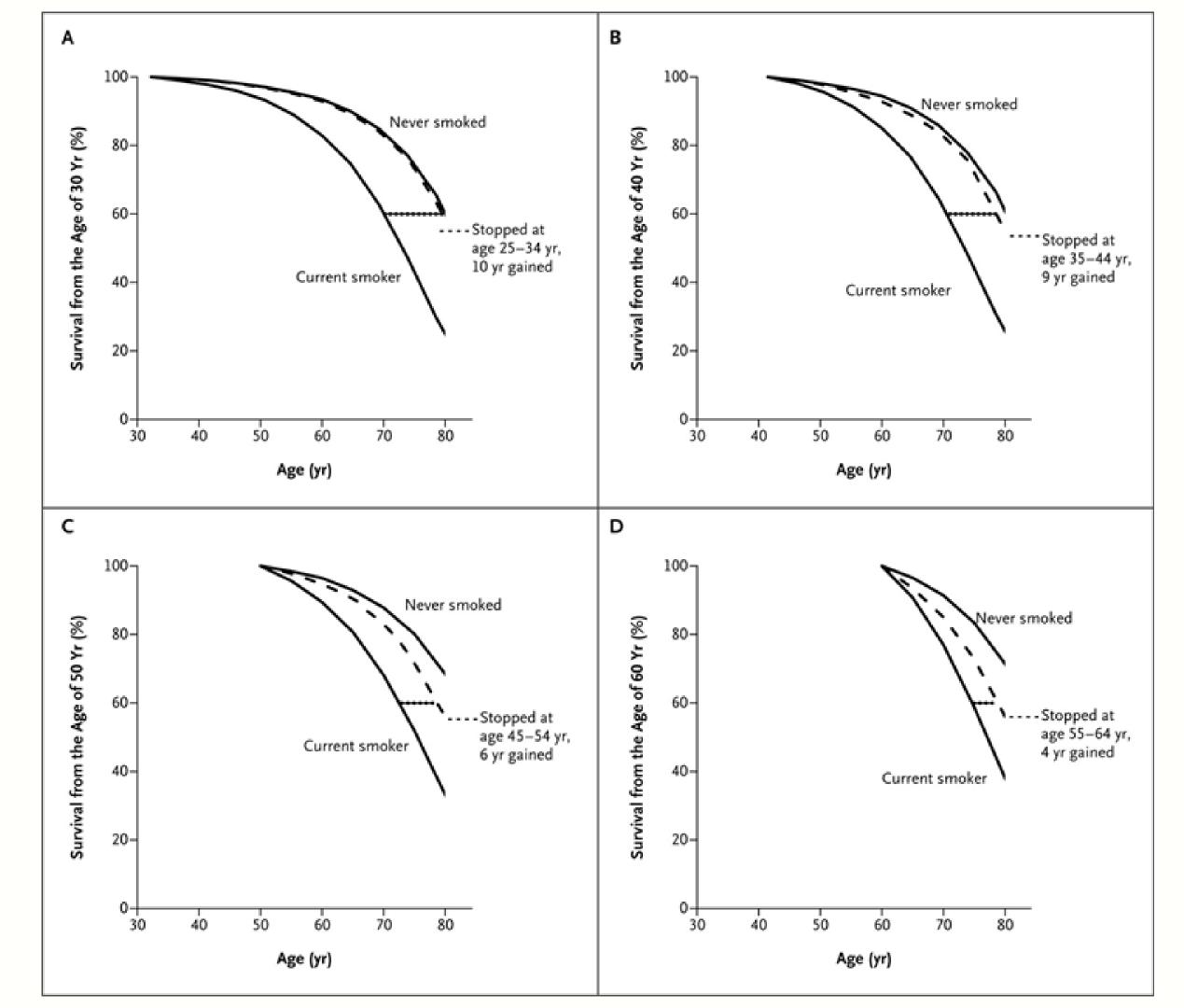
57.5%

ADULT SMOKERS

YOUTH SMOKERS

Effect of Smoking Cessation on Survival to 80 Years of Age, According to Age at the Time of Quitting

Jha, P., et al. (2013). 21st-century hazards of smoking and benefits of cessation in the United States. New England Journal of Medicine, 368(4), 341-350.



Smoking Cessation Treatment: Current Best Practices

COUNSELING

Individual, group, and telephone counseling

- Practical counseling (problem solving/skills training)
- Social support

MEDICATION

Nicotine replacement therapy

Oral medications

- Bupropion
- Varenicline

Barriers to Treatment

MOST QUIT ATTEMPTS ARE UNAIDED AND UNSUCCESSFUL.

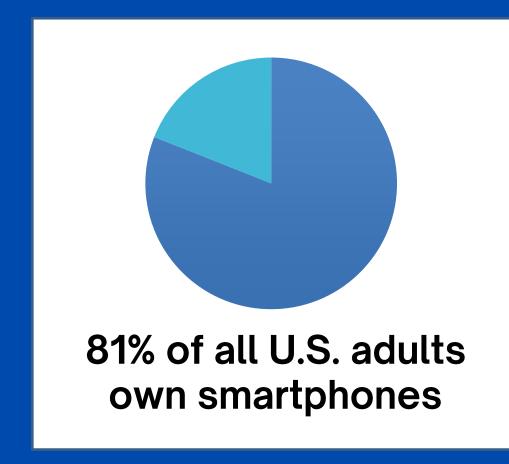
Lack of Time

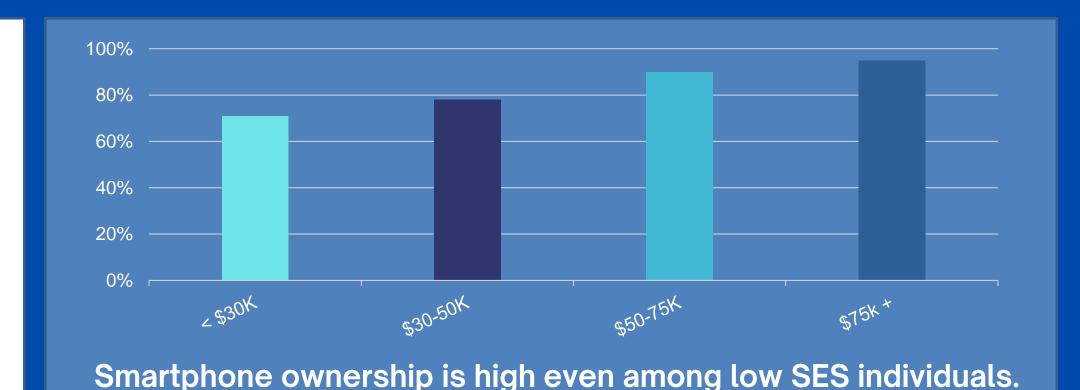
Transportation issues

Cost

Doubts about effectiveness

The Potential of Smartphones

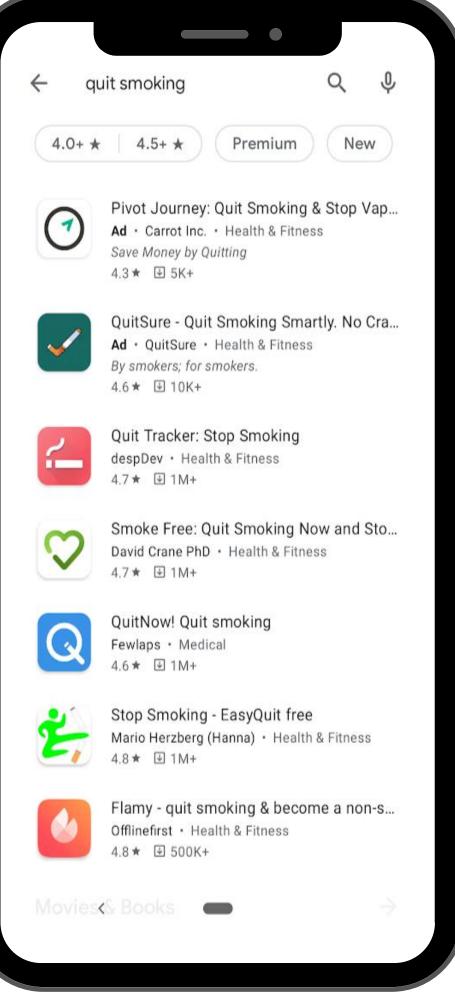




21% of Americans say they use smart watches or fitness trackers.

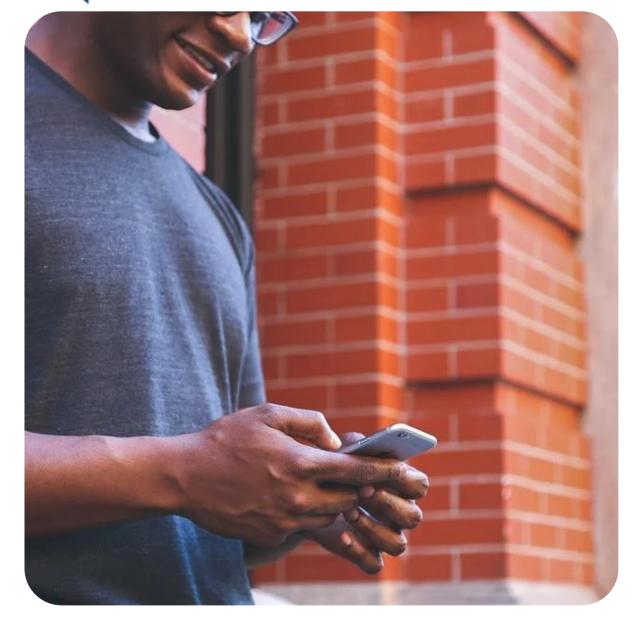
62% of smartphone owners have used their phone in the last year to look up information about a health condition.

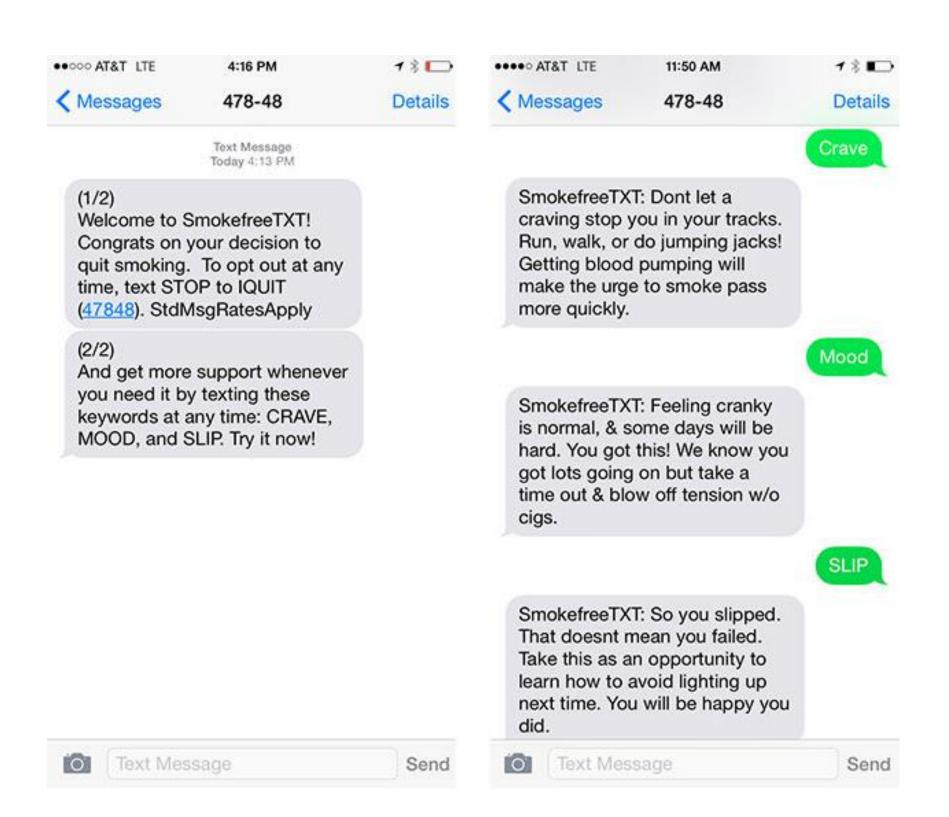
Mobile phone-based smoking cessation support



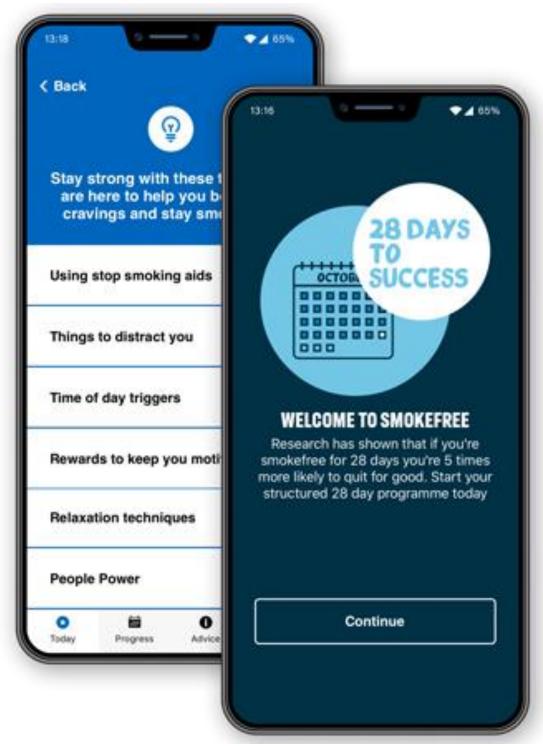
Text Messaging Interventions

smokefreeTXT

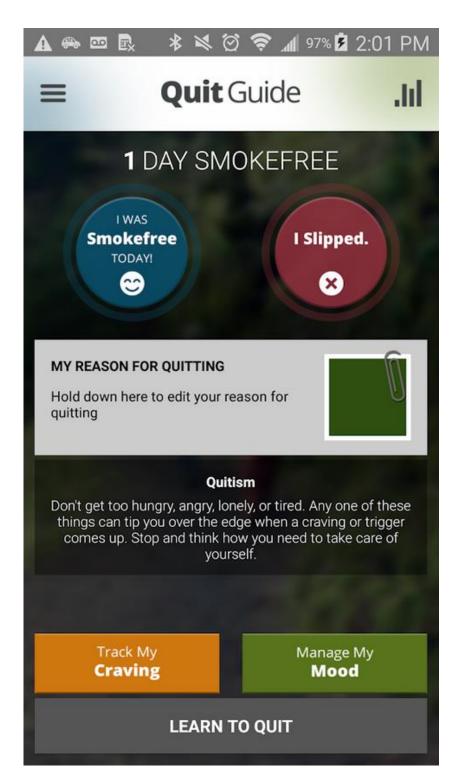




Smoking Cessation Apps



NHS Smokefree Public Health England



QuitGuide National Cancer Institute

What can we learn about smoking from smartphones?

Ecological Momentary Assesment (EMA)

Methods using repeated collection of real-time data on subjects' behavior and experience in their natural environments

TRADITIONAL SURVEY

"In the last 30 days, were you around any other smokers?"

EMA

"Right now, are you around any other smokers?"

Why use EMA?

Retrospective recall is subject to serious bias.

Ideal for dynamic behaviors and experiences.

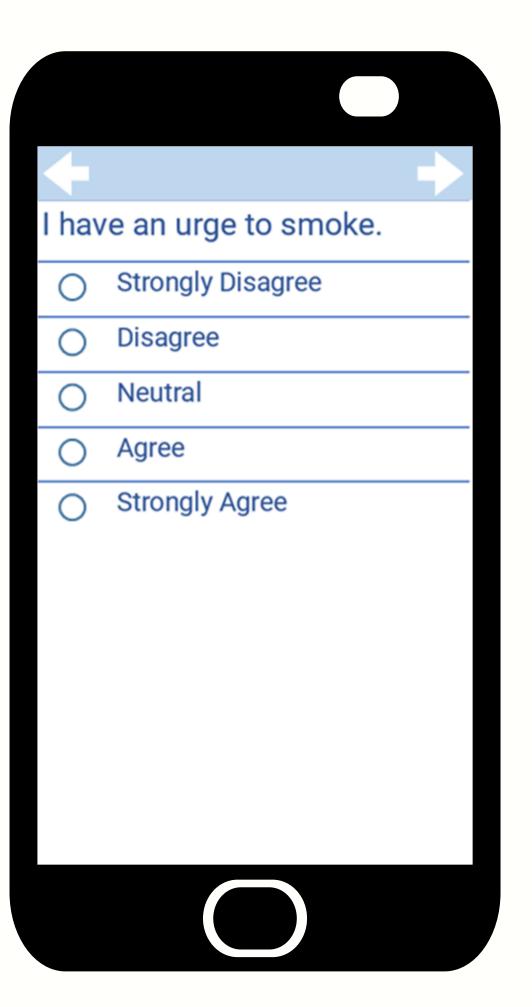
EMA Sampling Methods

Time-Based

Daily diary Random intervals

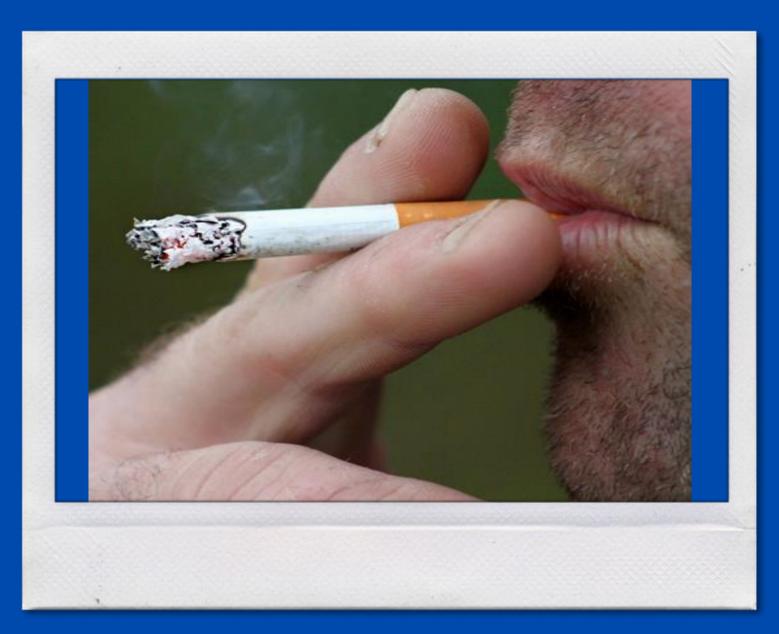
Event-Based

User-Initiated Sensor-triggered

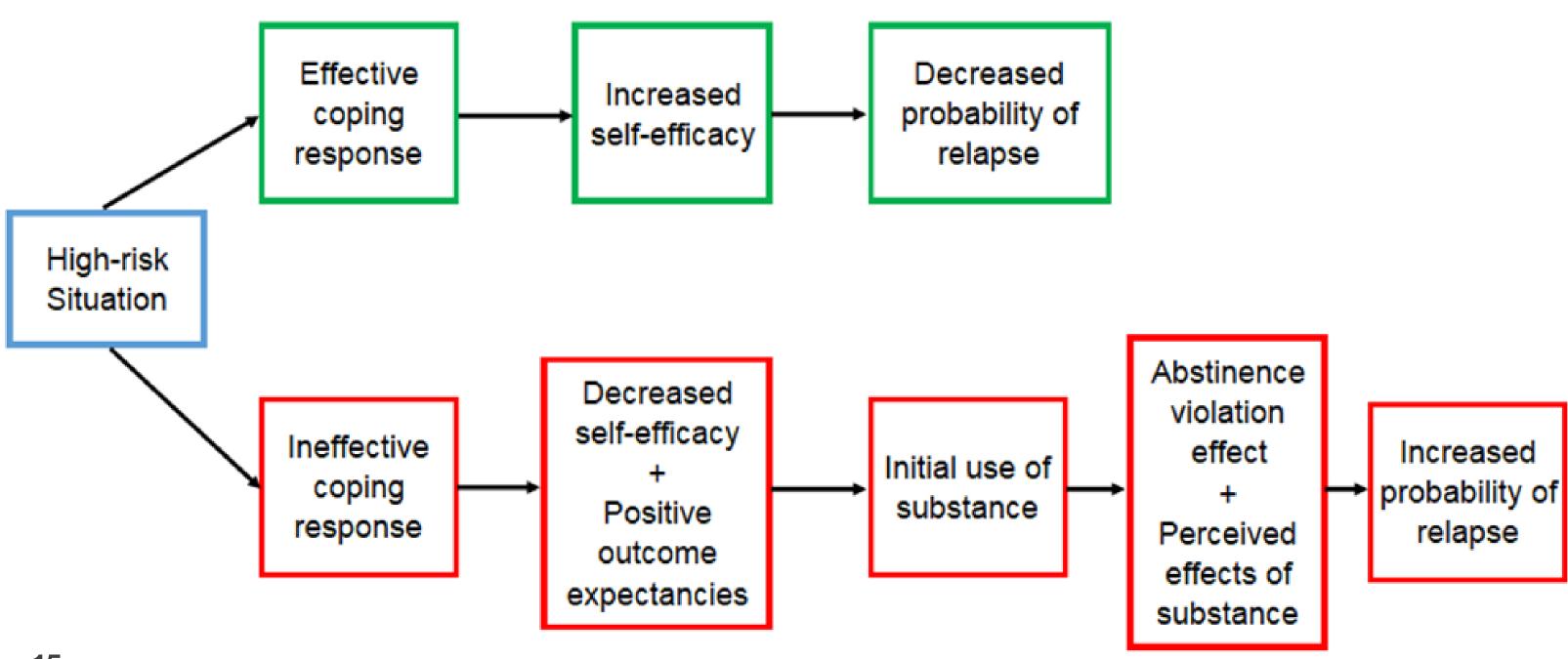


Momentary Antecedents of Smoking Behavior

- Urge to smoke
- Stress
- Alcohol use
- Cigarette availability
- Proximity to others smoking
- Proximity to tobacco retail outlets
- Low motivation to quit



Relapse Prevention Model

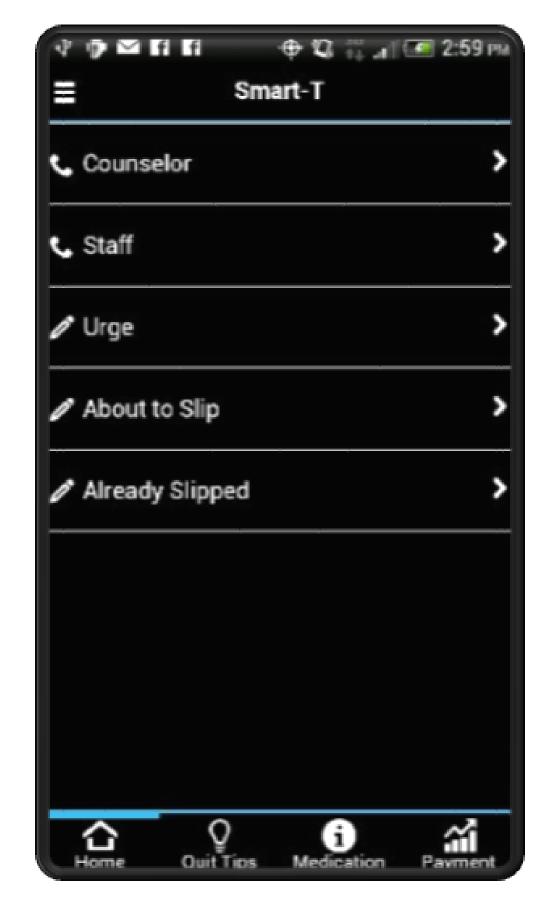


Just-in-Time Adaptive Interventions (JITAI)

Tailored support delivered in the moments when it is most needed

Attempts to provide the right type of support, at the right time, while eliminating support provision that is interruptive or otherwise not beneficial

Uses dynamic information to modify type, amount, and timing of support

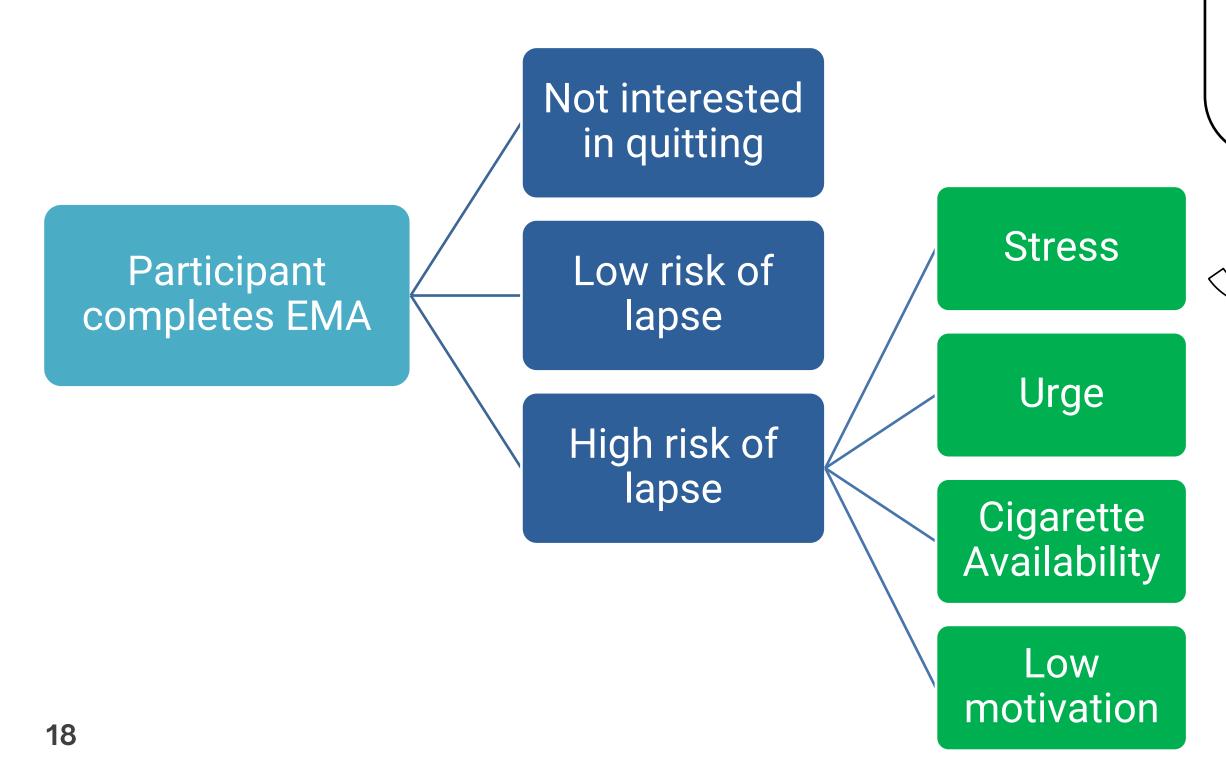


Smart-T: Adjunctive Smartphone Based Smoking Cessation Treatment

PI: Michael Businelle, Ph.D.

- Participants (N=59) from a safety-net hospital smoking cessation program
- Completed EMAs 5 times a day for 3 consecutive weeks (1 week pre-quit, 2 weeks post-quit)
- Used EMA responses to assess current risk of smoking lapse and automatically push tailored messages

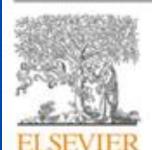
Types of Messages



Don't let negative emotions keep you from a healthier life! When you feel stressed or angry, distract yourself, go for a walk, get out of the situation for a few minutes, try deep breathing exercises.

Do tailored messages reduce smoking lapse triggers?

Addictive Behaviors 78 (2018) 30-35



Contents lists available at ScienceDirect

Addictive Behaviors

An ecological momentary intervention for smoking cessation: The associations of just-in-time, tailored messages with lapse risk factors

Emily T. Hébert^{a,,}, Elise M. Stevens^a, Summer G. Frank^a, Darla E. Kendzor^{a,b}, David W. Wetter^d, Michael J. Zvolensky^c, Julia D. Buckner^e, Michael S. Businelle^{a,b}

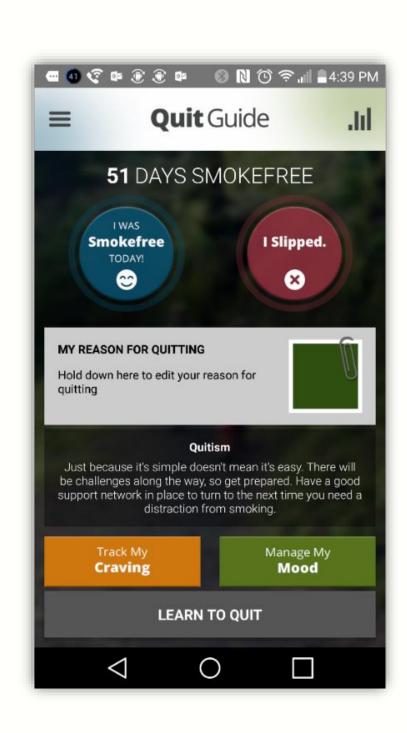
- Oklahoma Tobacco Research Center, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- b Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- The University of Houston, College of Liberal Arts and Social Sciences, Department of Psychology, Houston, TX, United States
- Department of Population Health Sciences and the Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
- Department of Psychology, Louisiana State University, Baton Rouge, LA, United States

Messages tailored to the situation were more effective in reducing lapse triggers than non-tailored messages.

Smart-T2

PI: Michael Businelle, Ph.D.

EMA Nicotine Replacement Therapy



Usual Care

Smoking cessation counseling

On-Demand

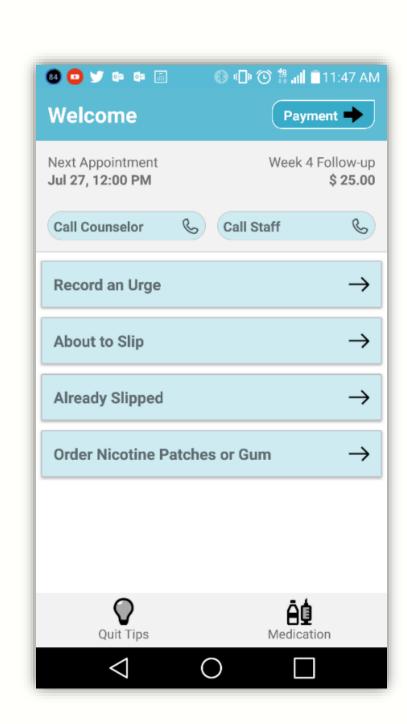
Tips

QuitGuide

- Journal entries
- Record triggers

Smart-T2

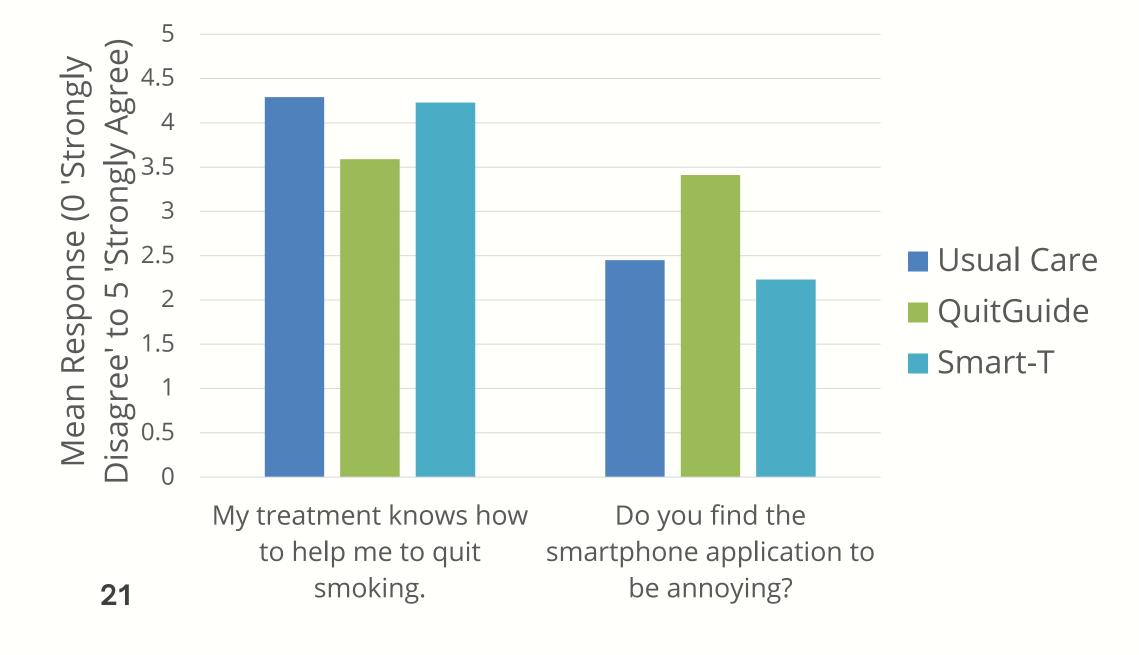
- Real-time, tailored messages
- Gum reminders
 - Order NRT
- Connect to helpline



Original Paper

A Mobile Just-in-Time Adaptive Intervention for Smoking Cessation: Pilot Randomized Controlled Trial

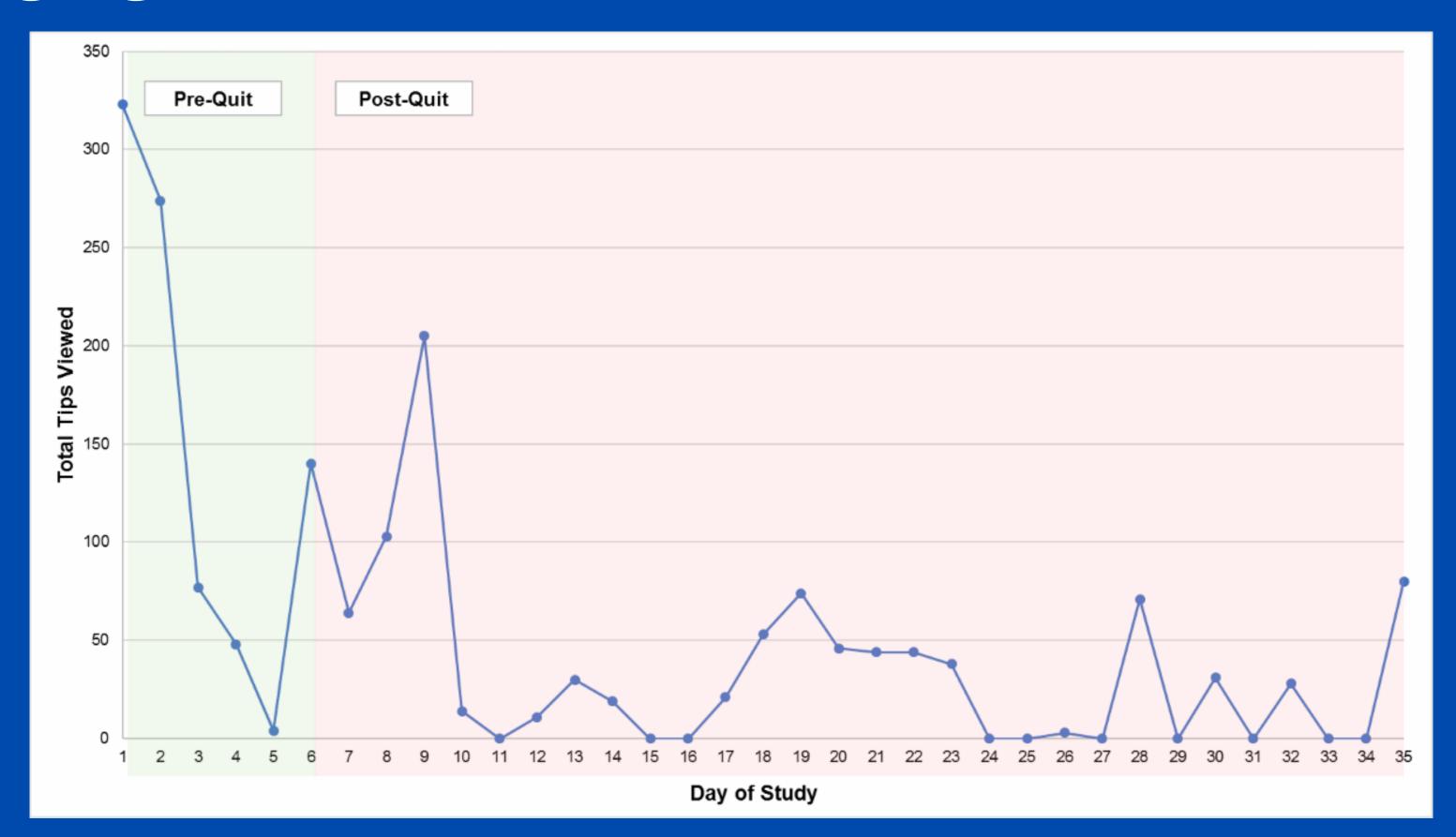
Emily T Hébert¹, DrPH; Chaelin K Ra¹, PhD; Adam C Alexander¹, PhD; Angela Helt¹, MA; Rachel Moisiuc¹, BS; Darla E Kendzor¹, PhD; Damon J Vidrine², DrPH; Rachel K Funk-Lawler³, PhD; Michael S Businelle¹, PhD



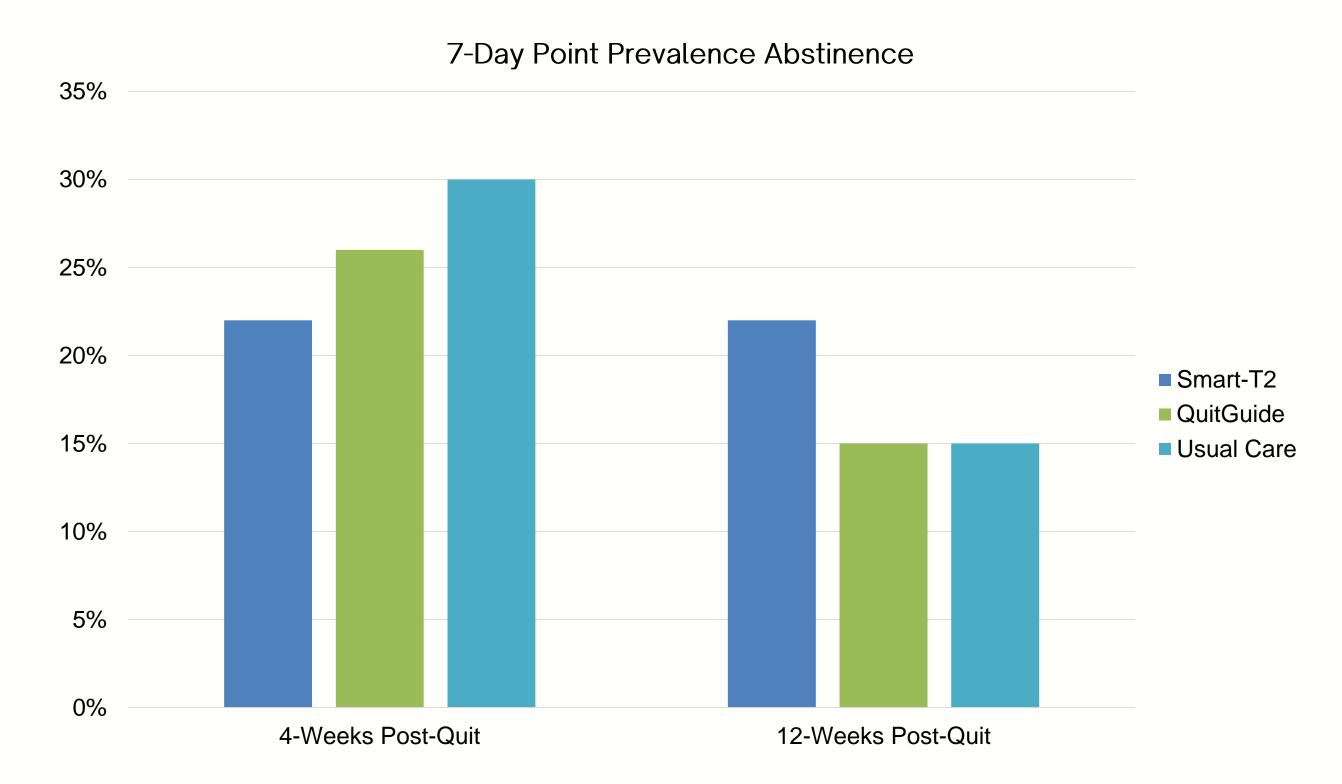
Both app-based interventions (Smart-T2 and QuitGuide) performed at least as well as traditional, in-person counseling in terms of:

- response rates
- loss to follow-up
- participant perceptions of the treatment
- engagement

Engagement with On-Demand Quit Tips

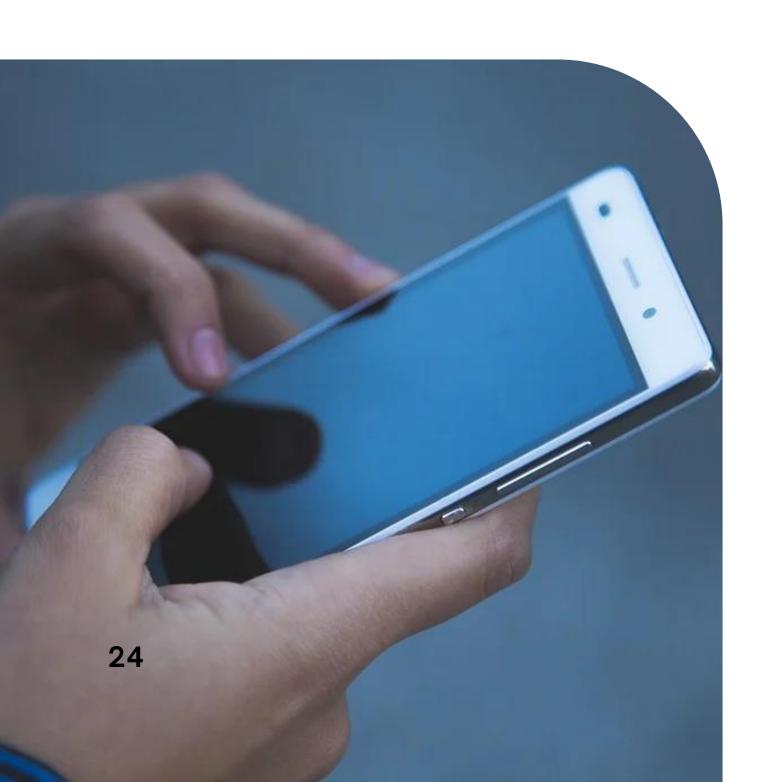


Smoking Cessation Outcomes



Smartphone-based smoking cessation treatments may be capable of providing similar outcomes to traditional, in-person counseling.

What we've learned...

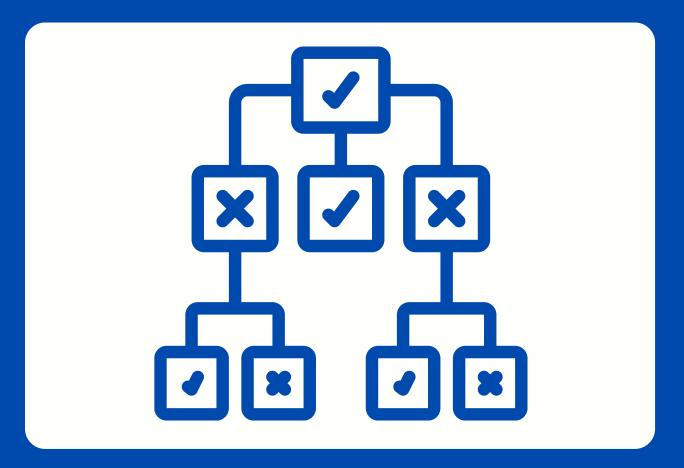


EMA is a useful tool to collect ecologically valid data about smoking behavior and experiences in real time.

Just-in-time adaptive interventions may be a promising strategy for health behavior change.

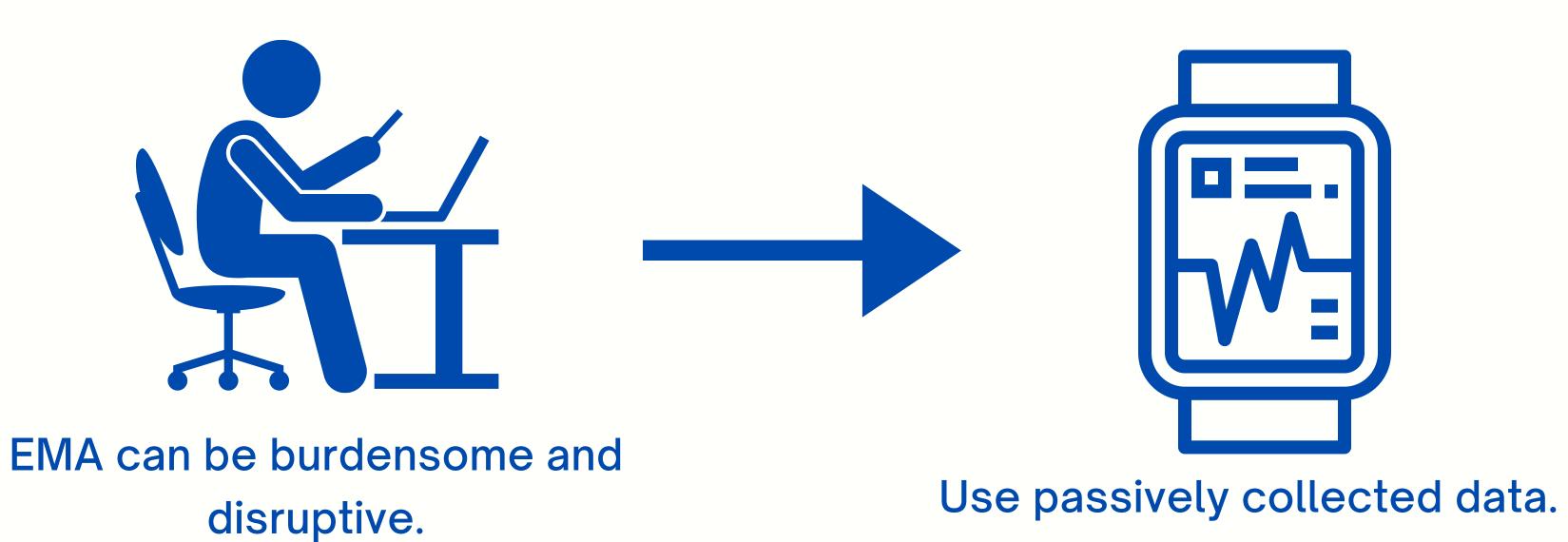
But...

EMA can be burdensome and disruptive.

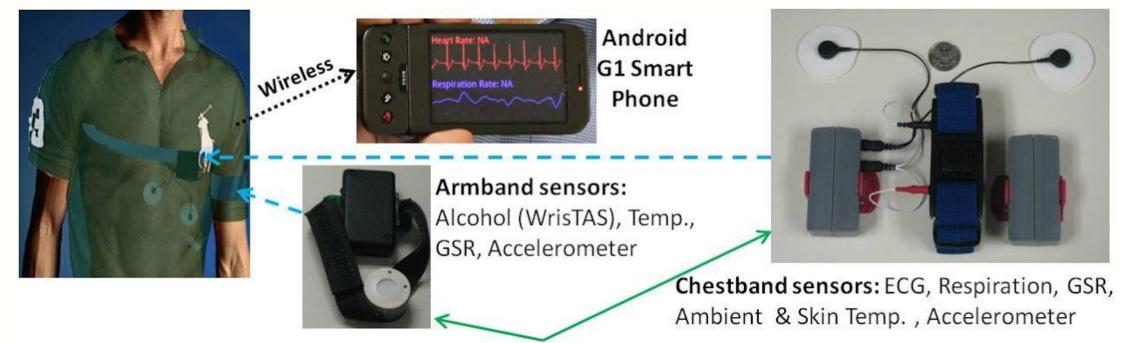


Decision rules for delivering JITAI are typically static and based on group-level trends.

Future Directions

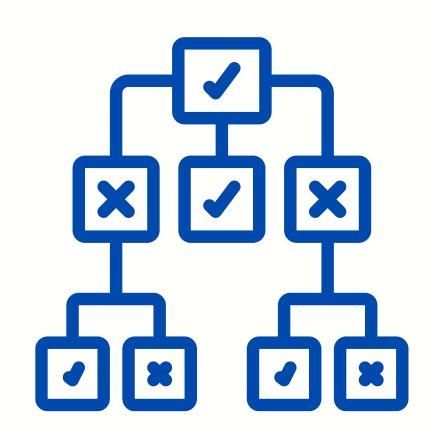


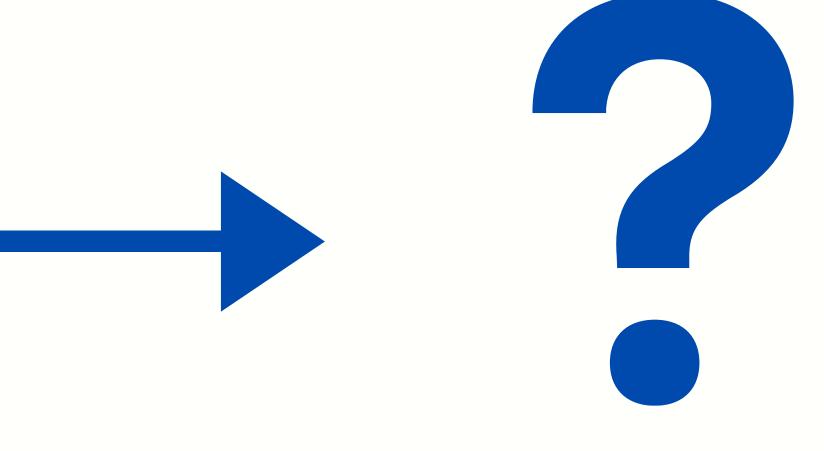
Passive Detection of Smoking and Smoking Antecedents



Ertin, E. et al. (2011). AutoSense: unobtrusively wearable sensor suite for inferring the onset, causality, and consequences of stress in the field. In Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems (pp. 274-287).

Imtiaz, M. H., Ramos-Garcia, R. I., Wattal, S., Tiffany, S., & Sazonov, E. (2019). Wearable sensors for monitoring of cigarette smoking in free-living: A systematic review. Sensors, 19(21), 4678.





Why is that a problem?

Original investigation

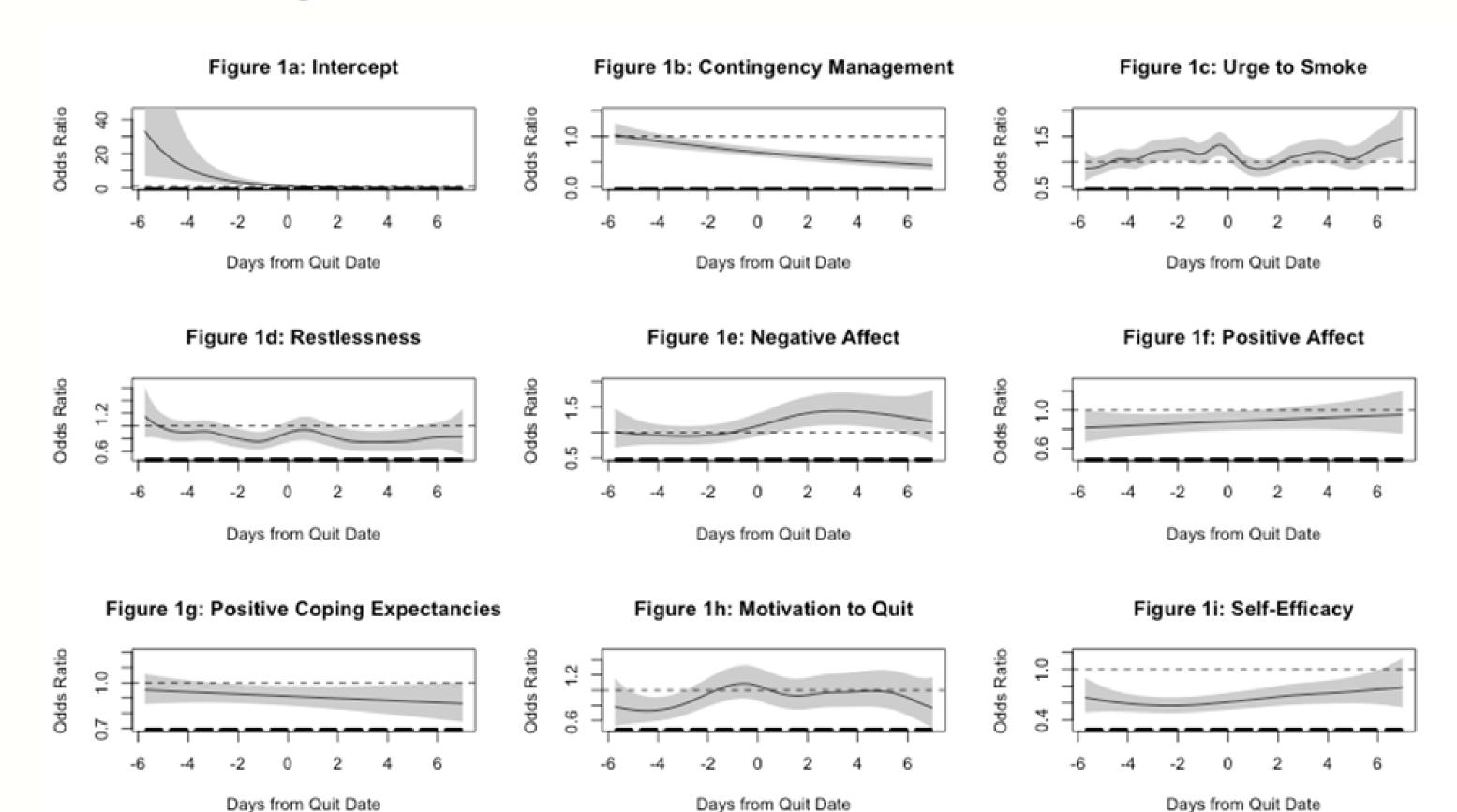
The Time-Varying Relations Between Risk Factors and Smoking Before and After a Quit Attempt

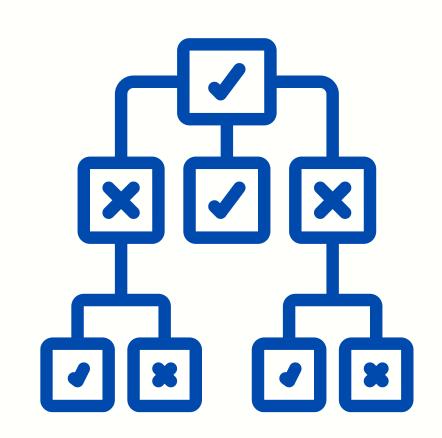
Matthew D. Koslovsky PhD¹, Emily T. Hébert DrPH², Michael D. Swartz PhD¹, Wenyaw Chan PhD¹, Luis Leon-Novelo PhD¹, Anna V. Wilkinson PhD³, Darla E. Kendzor PhD², Michael S. Businelle PhD²,

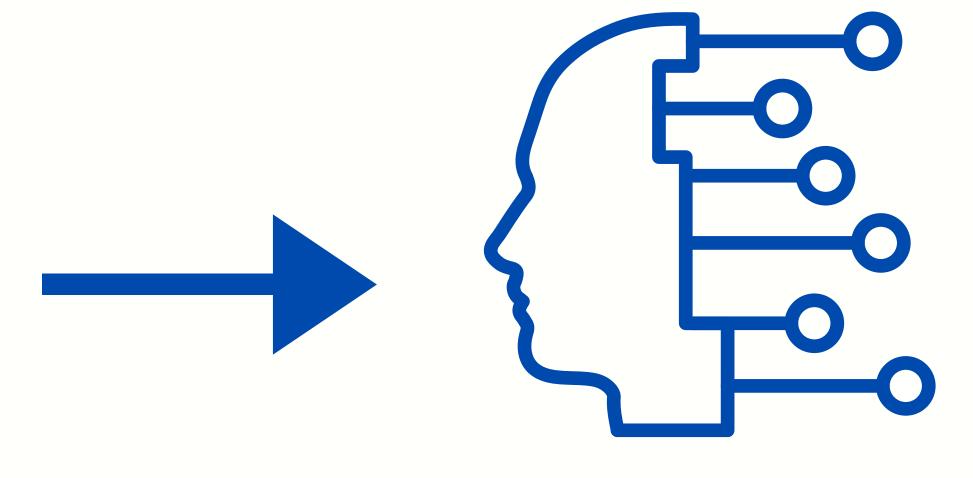
¹Department of Biostatistics & Data Science, UTHealth, Houston, TX; ²Oklahoma Tobacco Research Center, Stephenson Cancer Center, Oklahoma City, OK; ³Department of Epidemiology, UTHealth, Austin, TX; ⁴Department of Family and Preventive Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK

Corresponding Author: Matthew D. Koslovsky, PhD, Department of Biostatistics & Data Science, UTHealth, 1200 Pressler Street, Houston, TX 77030, USA. Telephone: 713 500 9570; E-mail: mkoslovsky12@gmail.com

Smoking lapse is dynamic.

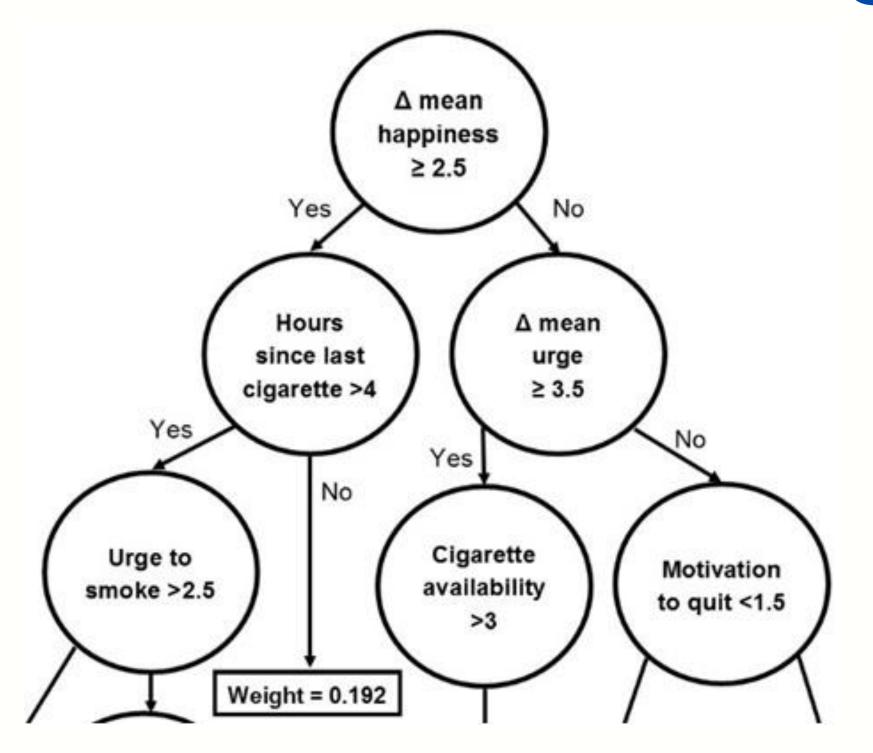






Use different analytic methods such as machine learning.

Machine Learning

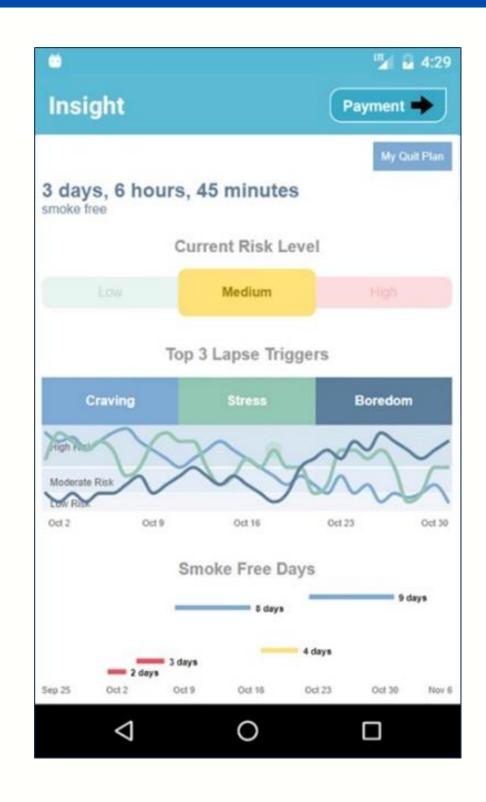


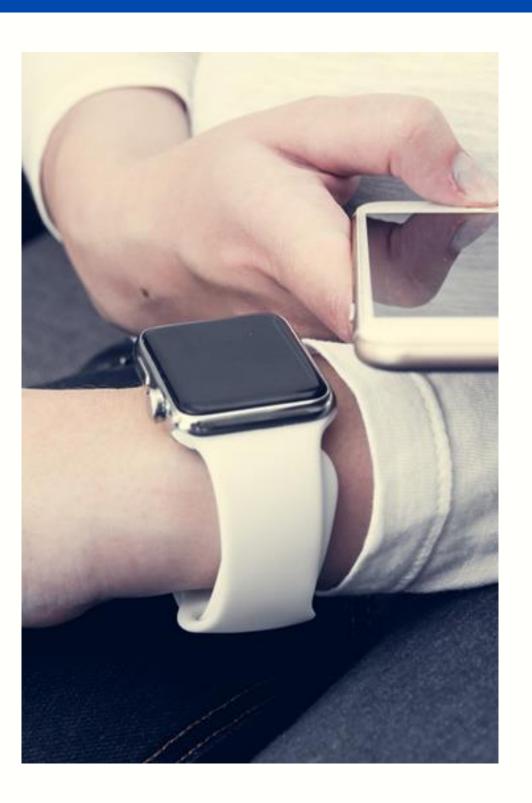
Can quickly handle massive amounts of data

Is exploratory

Can adapt to new data

Personalized Interventions for Smoking Cessation





Acknowledgements

Michael Businelle, Ph.D.

Darla Kendzor, Ph.D.

Robert Suchting, Ph.D.

Matthew Koslovsky, Ph.D.

Research in this presentation was supported by the National Institute On Drug Abuse of the National Institutes of Health under Award Number K99/R00DA046564.

Questions?

Emily Hébert, DrPH
Assistant Professor, Health Promotion and Behavioral
Sciences
UTHealth School of Public Health in Austin
emily.t.hebert@uth.tmc.edu