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• The impacts of meteorological factors
on COVID-19 case counts were assessed
after controlling population migration.

• The weather with low temperature,
mild diurnal temperature range and
low humidity likely favor the transmis-
sion of COVID-19.

• The epidemic might gradually ease par-
tially due to rising temperatures in com-
ing months.
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The purpose of the present study is to explore the associations between novel coronavirus disease 2019 (COVID-
19) case counts and meteorological factors in 30 provincial capital cities of China. We compiled a daily dataset
including confirmed case counts, ambient temperature (AT), diurnal temperature range (DTR), absolute humid-
ity (AH) andmigration scale index (MSI) for each city during the period of January 20th toMarch 2nd, 2020. First,
we explored the associations between COVID-19 confirmed case counts, meteorological factors, and MSI using
non-linear regression. Then, we conducted a two-stage analysis for 17 cities with more than 50 confirmed
cases. In the first stage, generalized linear models with negative binomial distribution were fitted to estimate
city-specific effects of meteorological factors on confirmed case counts. In the second stage, the meta-analysis
was conducted to estimate the pooled effects. Our results showed that among13 cities that have less than 50 con-
firmed cases, 9 cities locate in theNorthern Chinawith average AT below0 °C, 12 cities had average AHbelow4 g/
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Absolute humidity
Population migration
Fig. 1. Geographic patterns
m3, and one city (Haikou) had the highest AH (14.05 g/m3). Those 17 citieswith 50 andmore cases accounted for
90.6% of all cases in our study. Each 1 °C increase in AT and DTRwas related to the decline of daily confirmed case
counts, and the corresponding pooled RRs were 0.80 (95% CI: 0.75, 0.85) and 0.90 (95% CI: 0.86, 0.95), respec-
tively. For AH, the association with COVID-19 case counts were statistically significant in lag 07 and lag 014. In
addition, we found the all these associations increasedwith accumulated time duration up to 14 days. In conclu-
sions, meteorological factors play an independent role in the COVID-19 transmission after controlling population
migration. Local weather condition with low temperature, mild diurnal temperature range and low humidity
likely favor the transmission.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Wuhan, the capital city of Hubei province, China, was the first major
metropolitan region suffering from the coronavirus disease 2019
(COVID-19) outbreak and the epidemic center since December, 2019
(Zhou et al., 2020). COVID-19 is caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus. Due to
the high contiguousness and wide spread, COVID-19 has officially
been declared a pandemic by the World Health Organization (WHO)
on March 11, 2020 (World Health Organization, 2020b). As of March
21th, more than 170 countries has reported this epidemic, with a total
diagnosed cases of about 234,073 causing over 9000 deaths (World
Health Organization, 2020b). Europe and the United States have gradu-
ally becoming the epicenter of the pandemic (World Health
Organization, 2020c) and the world is facing great public health crisis
from COVID-19, which is likely more severe than SARS in 2003.

In China, COVID-19 has spread in multiple major cities that have
huge numbers of both inbound and outbound passengers (e.g., Beijing,
Shanghai, and Guangzhou) (Wu et al., 2020). To block the quick spread
of COVID-19 confirmed case counts i
of infection and control the severe epidemic, China has conducted strict
measures by mobilizing and redistributing nationwide resources,
shelter-in-place and quarantining all confirmed cases and close con-
tacts. A study indicated that a series of control measures since January
23, 2020 in China reduced the COVID-19 epidemic size significantly,
and the similar measures were expected to remain until the end of
April 2020 (Yang et al., 2020). The current daily new COVID-19 cases
in China have reached very low level. China has cumulatively reported
more than 81,008 confirmed cases and over 3,255 deaths as of March
21, 2020 (National Health Commission of the People's Republic of
China, 2020). Among all these effective strategies in controlling this ep-
idemic, locking down Wuhan, a city of 11 million residents, was one of
themost dramaticmeasures. It turned out that the limitation of popula-
tion migration was effective in controlling epidemic diseases like
COVID-19. However, the independent effect of meteorological factors
on the transmission of COVID-19 has not been studied systemically
while controlling population migration.

Previous studies showed that cold and dry weather is beneficial
for the survival and spread of droplet-mediated viral diseases like
n 30 provincial capital cities of China as of March 2nd, 2020.



Fig. 2. Total COVID-19 case counts, average values of meteorological factors and MSI in 30 provincial capital cities of China during the period of January 20th toMarch 2nd 2020. Note: A:
Temporal distribution; B: Regional distribution. AT: Ambient temperature; DTR: Diurnal temperature range; AH: Absolute humidity; MSI: Migration scale index.
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influenza (Lowen et al., 2007; Shaman and Kohn, 2009; Li, 2011).
The SARS epidemic was gradually faded with the warming weather
coming, and was basically ended in July, 2003 (Tan et al., 2005;
Wang et al., 2006; Cao et al., 2016), suggesting that the tempera-
ture and its variations might have affected the SARS outbreak.
Some studies have suggested that the climate change might have
contributed to various infectious diseases emergence and spread
(Lofgren et al., 2007; Gale et al., 2010; Stott, 2016), including the
SARS and COVID-19. In Korea, researchers found that the risk of in-
fluenza incidence was significantly increased with low daily tem-
perature and low/high relative humidity (RH), but a positively
correlated with diurnal temperature range (DTR) (Park et al.,
2020). Absolute humidity (AH) had significant correlations with
influenza viral survival and transmission rates (Shaman et al.,
2010; Shaman et al., 2011). One important feature of COVID-19 ep-
idemic is that the countries currently suffering most from the dis-
ease are most located in the regions with low temperature.
Therefore, meteorological factors, such as ambient temperature
(AT) and humidity, might play an important role in the spread of
the disease.

Many factors might influence the COVID-19 epidemic, including so-
cial and political factors, geographical factors, climatic factors, etc.
(Casadevall, 2020;Wu et al., 2020).When only considering the temper-
ature in single-factormodel in thehigher-temperature group, every 1 °C
increase in the minimum temperature leads to a decrease of the cumu-
lative number of COVID-19 cases by 0.86 (Wang et al., 2020). Luo etc. re-
ported that weather was related to the spread of COVID-19, but the
increase of temperature may not necessarily lead to declines in case
countswithout the implementation of extensive public health interven-
tions (Luo et al., 2020). In another study, researchers estimated that the
weather variables explain 18% of the variation in disease doubling time,
and the remaining 82% may be related to containment measures, gen-
eral health policies, population density, transportation or cultural as-
pects (Oliveiros et al., 2020). Because of the human to human
transmission, themigration should be consideredwhen evaluate the ef-
fects ofmeteorological factors over COVID-19 transmission. However, to



Table 1
Summary of statistics for total confirmed COVID-19 case counts, MSI and meteorological factors in 30 cities during the period of January 20th to March 2nd, 2020.a

Cities Counts of confirmed cases Migration scale index Daily average temperature (°C) Diurnal temperature range (°C) Absolute humidity (g/m3)

Chongqing 576 2.80 ± 2.80 8.67 ± 1.83 4.03 ± 2.36 7.06 ± 1.15
Beijing 417 3.80 ± 3.80 0.80 ± 2.92 9.69 ± 4.54 2.75 ± 2.02
Guangzhou 346 4.27 ± 4.27 15.01 ± 3.50 8.04 ± 5.96 10.07 ± 3.33
Shanghai 338 3.64 ± 3.64 8.62 ± 2.92 5.47 ± 4.20 6.45 ± 2.18
Changsha 242 2.54 ± 2.54 7.49 ± 3.34 6.42 ± 2.47 6.33 ± 3.11
Nanchang 232 0.84 ± 0.84 9.88 ± 3.81 6.85 ± 0.77 7.17 ± 3.18
Haerbin 198 0.99 ± 0.99 −13.90 ± 5.68 11.08 ± 0.98 1.39 ± 0.89
Hangzhou 181 0.79 ± 0.79 7.72 ± 2.38 5.91 ± 2.64 6.23 ± 2.20
Hefei 174 1.76 ± 1.76 5.37 ± 3.12 9.42 ± 1.11 5.70 ± 3.54
Zhengzhou 157 2.08 ± 2.08 4.82 ± 2.73 10.20 ± 2.52 4.08 ± 2.34
Chengdu 143 4.29 ± 4.29 9.03 ± 1.75 6.39 ± 5.88 6.33 ± 1.21
Tianjin 136 1.46 ± 1.46 1.33 ± 2.96 7.35 ± 1.24 3.39 ± 2.12
Xian 121 1.83 ± 1.83 3.07 ± 2.21 11.53 ± 2.39 3.81 ± 2.02
Nanjing 93 1.76 ± 1.76 6.46 ± 2.37 6.95 ± 2.45 5.82 ± 2.99
Fuzhou 74 0.85 ± 0.85 12.94 ± 3.29 7.23 ± 0.90 8.42 ± 3.89
Nanning 55 1.18 ± 1.18 14.47 ± 3.84 5.77 ± 1.33 9.73 ± 3.77
Kunming 54 1.84 ± 1.84 9.69 ± 2.36 11.63 ± 2.83 5.34 ± 2.94
Jinan 47 1.44 ± 1.44 3.91 ± 3.28 7.28 ± 1.44 3.57 ± 3.76
Changchun 45 1.31 ± 1.31 −11.01 ± 5.92 10.32 ± 1.72 1.68 ± 1.12
Haikou 39 0.74 ± 0.74 19.73 ± 3.30 5.20 ± 0.70 14.05 ± 3.14
Lanzhou 37 0.68 ± 0.68 −0.92 ± 2.05 12.62 ± 0.86 1.95 ± 0.54
Guiyang 36 1.40 ± 1.40 6.04 ± 3.90 5.48 ± 1.32 6.35 ± 3.58
Yinchuan 36 0.52 ± 0.52 −0.15 ± 3.95 13.64 ± 0.98 1.76 ± 0.64
Shenyang 32 1.76 ± 1.76 −8.80 ± 4.36 12.77 ± 1.15 1.83 ± 0.89
Shijiazhuang 29 1.06 ± 1.06 2.77 ± 3.05 9.25 ± 1.71 3.24 ± 0.95
Urumqi 23 0.64 ± 0.64 −7.02 ± 3.77 10.12 ± 0.00 1.92 ± 0.23
Taiyuan 20 1.00 ± 1.00 −0.52 ± 2.30 13.24 ± 1.42 2.46 ± 0.67
Xining 15 0.53 ± 0.53 −5.30 ± 0.90 13.51 ± 0.65 1.45 ± 0.40
Huhehaote 8 0.41 ± 0.41 −6.65 ± 3.71 11.30 ± 0.34 1.63 ± 0.39
Lhasa 1 0.23 ± 0.23 −0.98 ± 0.55 15.20 ± 0.47 0.70 ± 0.10
Average 130.17 ± 138.60 1.62 ± 1.14 3.44 ± 7.97 9.13 ± 3.04 4.75 ± 3.14

a To account for the latent period of COVID-19, for each city, averaged meteorological parameters were calculated during the period of 20th to March 2nd, 2020.
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our knowledge, previous studies have not controlled the populationmi-
gration to examine independent effects of weather conditions on the
COVID-19 transmission.

In this study, we first explored non-linear relation between COVID-
19 case counts and meteorological factors. Then we used generalized
linear models to examine the associations between meteorological fac-
tors and COVID-19 daily case counts in 30 provincial capitals except for
Wuhan in China while controlling the population migration.

2. Methods

2.1. Data collection

Since the COVID-19 condition was much more complicated com-
pared with other provinces due to government interventions in Hubei,
likeWuhan lockdown andmass screening, we chosen to study the rela-
tionship in 30 capital cities of China. We obtained daily officially re-
ported confirmed case counts from the Health Commission of the 30
capital cities except Wuhan during the period January 20th to March
2nd 2020 (Fig. 1). The daily meteorological data, including hourly tem-
perature and RH, were obtained from Shanghai Meteorological Bureau
and Data Center of Ministry of Ecology from January 5th to March 2nd
2020. Meanwhile, migration scale index (MSI) of the 30 cities was col-
lected from the website of Baidu Migration (https://qianxi.baidu.
com/?from=mappc). MSI reflects the population scale of moving in,
and MSI of cities can be comparable. The daily average AT and DTR
were calculated based on hourly data. AH was calculated according to
the method used in the previous study which was measured by vapor
pressure (g/m3) (Shaman et al., 2011; Davis et al., 2016; Liu et al., 2018).

2.2. Statistical analysis

A descriptive analysis was performed to explore the city-specific
characteristics of confirmed case counts, AT, DTR, AH and MSI of these
30 cities. For each city, average meteorological data were calculated
based on the period of January 20th to March 2nd, 2020 to account for
the lag effect and the latent period of COVID-19. Then, a second order
polynomial non-linear regression models were fitted between total
COVID-19 confirmed case counts and AT, DTR, AH, MSI.

We characterize the disease transmission and case distribution in
the 13 cities with less than 50 confirmed cases. Then, a two-stage anal-
ysis was conducted for the other 17 cities with more than 50 cases in
each city. In the first stage, because of the clustering characteristics of
the disease, we adopted generalized linear models with negative bino-
mial distribution to estimate city-specific effects. The analyseswere per-
formed with R software version 3.3.2, and the “MASS” package (MASS:
Support functions and datasets for venables and Ripley's MASS, 2019)
was used to fitting models. The fitted formulas were as follows:

Log E Ytð Þ ¼ α þ β1ATþ ns RH;3ð Þ þ β2MSI ð1Þ

Log E Ytð Þ ¼ α þ β1DTR þ ns RH;3ð Þ þ β2MSI ð2Þ

Log E Ytð Þ ¼ αþ β1AHþ β2MSI ð3Þ

where t is the day of the observation; E(Yt) is the expected number of
daily confirmed cases on day t;α is the intercept; β is the regression co-
efficient. Considering the lag effects and the average latent period of
COVID-19, 3-day moving average RH and 3-day moving average MSI
were controlled in the models when exploring the effects of AT
(1) and DTR (2). As a meteorological factor, natural cubic splines (ns)
with 3 df was used for controlling RH. Considering the collinearity,
only three-day moving average MSI were controlled in the models
(3) when dealing with AH. Because of the lag effects, we evaluated the
associations in lag 0, lag 03, lag 07 and lag 014 between daily confirmed
case counts and these meteorological factors for each city.

In the second stage of the analysis, we conducted a random effects
meta-analysis to pool estimates across city-specific associations. The

https://qianxi.baidu.com/?from=mappc
https://qianxi.baidu.com/?from=mappc
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meta-analysis was performed based on STATA/SE 11.0 (StataCorp LLC,
USA).

All resultswere expressed as the relative risk (RR) in daily confirmed
case counts with 95% confidence intervals (95% CI) relative to a fixed
change (1 °C or 1 g/m3) of each factor. Statistical significance was set
at p-value b 0.05.

3. Results

3.1. Descriptive analysis

As of March 2nd, 2020, a total of 3,905 cases were officially reported
in 30 provincial capital cities in China. Among these cities, 17 cities had
more than 50 confirmed cases, accounting for 90.6% of all cases in this
study. During our study period, the daily MSI, AT, DTR and AH for
these 30 cities were 1.62 ± 1.14, (3.44 ± 7.97) °C, (9.13 ± 3.04) °C
and (4.76 ± 3.14) g/m3. Strong regional differences were observed for
meteorological factors and MSI.

Among the 13 cities that have less than 50 cases, 9 cities located in
the Northern China with average AT below 0 °C, 12 cities had average
AH below 4 g/m3 and one city (Haikou) had the highest AH (14.05 g/
m3) (Figs. 1, 2 and Table 1). The MSI in these 13 cities were relatively
lower than the remaining 17 cities that havemore than 50 cases (Fig. 2).

3.2. Temporal and regional characteristics of COVID-19 transmission

The nonlinear regression analysis results (Fig. 3) suggest brief distri-
bution characteristics between confirmed case counts and AT, DTR, AH,
MSI. We found an obvious trend association between AT and the
Fig. 3. Associations between COVID-19 confirmed case counts andmeteorological factors, MSI i
0.1022 ∗X2, R2=0.08776; (B)DTR, Curve formula: Y=408.5–40.24 ∗X+0.9651∗X2, R2=0.23
38.21 + 125.7 ∗ X-8.973 ∗ X2, R2 = 0.4953. The brown lines in figures represent second order
Diurnal temperature range; AH: Absolute humidity;MSI:Migration scale index. (For interpretat
of this article.)
confirmed case counts, it seemed that the confirmed case number in-
creased with temperature increasing in the range of −20 °C–20 °C.
Like that, similar trend was also found between confirmed case counts
andMSI. Well, we found there was an arched shape for the relationship
between confirmed case counts and period-average AH, as there were
more confirmed cases at the AH of around 6 g/m3. However, the regres-
sion model showed that the confirmed cases counts declined with the
increase of DTR in the range of 5 °C–15 °C.

3.3. AT, DTR and AH negatively related to the increase of COVID-19
transmission

Concerning the small sample size in those 13 cities, the fitted city-
specific generalized linear models and meta-analysis were only con-
ducted for the 17 cities with 50 and more cases to explore the associa-
tions between COVID-19 case counts and meteorological factors
(Fig. 4). In city-specific analysis, significant negative associations were
found in 9 cities (Beijing, Tianjin, Zhengzhou, Hangzhou, Shanghai,
Xian, Nanchang, Fuzhou and Guangzhou) in lag 03. In meta-analysis,
the pooled results showed that each 1 °C increase in AT was related to
the decline of daily confirmed COVID-19 case counts, the corresponding
overall RR was 0.80 (95% CI: 0.75, 0.85) (Fig. 4A). Each 1 °C increase in
DTR was associated with decreased patients in lag 03 and the pooled
RR was 0.90 (95% CI: 0.86, 0.95). In the city level, it was significant for
Hangzhou, Nanchang, Fuzhou, Chengdu and Zhengzhou in lag 03
(Fig. 4B). As showed in Fig. 4C, AH had significant negative effects on
confirmed case counts for 4 cities, including Guangzhou, Hangzhou,
Nanchang, and Nanjing. Meta-analysis showed that each 1 g/m3 in-
crease in AH was significantly associated with reduced confirmed case
n 30 provincial capital cities of China. Note: (A) AT, Curve formula: Y= 118.5+ 5.552 ∗ X-
79; (C) AH, Curve formula: Y= –40.20+62.59∗X-3.957 ∗X2, R2=0.2291; (D)MSI: Y= –
polynomial curves. The blue dots represent the 30 cities. AT: Ambient temperature; DTR:
ion of the references to colour in thisfigure legend, the reader is referred to theweb version



Fig.ure 4.Meta-analysis for effects of meteorological factors on COVID-19 case counts in 17cities during the period of January 20th to March 2nd 2020. Note: (A) AT; (B) DTR; (C) AH;
(D) Pooled estimates in lag 0, lag 03, lag 07 and lag 014. The associations of COVID-19 case counts with AT, AH and DTR in each city was evaluated by fitting generalized linear models
respectively (Lag 03). The meta-analysis was conducted to combine the city-specific results. AT: Ambient Temperature; DTR: Diurnal Temperature Range; AH, Absolute Humidity.
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counts for 17 cities cities in lag 07, lag 014 and the combined RR was
0.72 (95% CI: 0.59, 0.89) and 0.33 (95% CI: 0.21, 0.54).

Fig. 4D showed associations between confirmed case counts and AT,
DTR and AH in lag 0, lag 03, lag 07 and lag 014. The pooled effects of AT,
DTR and AH became stronger with the increase of cumulative lag days.

4. Discussions

As of March 2nd, China has reported 80, 302 COVID-19 cases. This is
the first study to examine the impact of meteorological factors on
COVID-19 after controlling population migration. Our results indicated
that COVID-19 transmission may be affected by meteorological factors,
and a weather with low temperature, mild diurnal temperature range
and low humidity likely favor its transmission.

Our findings on the impact of meteorological conditions over the
transmission of COVID-19 are consistent with previous studies on the
transmission of SARS or other infectious diseases (Tan et al., 2005; Lin
et al., 2006; Liu et al., 2018; Park et al., 2020). Some studies suggested
that global climate change might be accompanied by the changes to
the outbreak of infectious diseases (Bezirtzoglou et al., 2011; Anwar
et al., 2019; Casadevall, 2020). As we know, viruses are completely de-
pendent on their hosts for replication and survival. It is possible that
as virus has adapted to gradually higher global AT, some new and previ-
ously unknown infectious diseases are likely to emerge and spread
(Casadevall, 2020), such as SARS-CoV and Ebola virus, and poses a
threat to human health. The emergence and spread of novel coronavirus
since December 2019might be related to the ongoing climate change. In
winter and spring, a decrease in resistance to respiratory diseases in a
colder environment for population might be easier to accelerate the
spread velocity. Lin etc. showed that in days with a lower air tempera-
ture during the epidemic, the risk of increased daily incidence of SARS
was 18.18-fold (95%CI: 5.6, 58.8) higher than in dayswith a higher tem-
perature (Lin et al., 2006). Tan etc. found a close association between
temperature, its variations and the SARS outbreak in the four cities in
China, suggesting that SARS more likely outbreaks in spring (Tan et al.,
2005). Consistent with these results, we also found that each 1 °C in-
crease in AT was related to the decline of daily confirmed case counts,
the corresponding overall RR was 0.80 (95% CI: 0.75, 0.85). In addition,
Lambrechts etc. has found that a large DTR might impede dengue virus
infection of the mosquito midgut and reduce transmission risks com-
pared to a small DTR or constant temperature. Intensity of dengue
virus transmission can be influenced by the specific combination of
mean and range in temperature fluctuations (Lambrechts et al., 2011).
In our study, each 1 °C increase in DTR was associated with decreased
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patients in lag 03 and the pooled RR was 0.90 (95% CI: 0.86, 0.95). This
suggests that novel coronavirus might be also more suited to survive
in an environment with small DTR or constant temperature.

AH is an indicator describing the mass of water vapor per vol-
ume of air (g/m3). Shaman et al. found that 50% of influenza virus
transmission variability and 90% of influenza virus survival vari-
ability could be explained by AH variation, whereas, only 12% and
36% could be explained by relative humidity (Shaman and Kohn,
2009), and the epidemic influenza typically peaks in the winter
when low AH maximizes R0 (Shaman et al., 2011). A previous
study found that AH was one of most important weather parame-
ters in predicting heat-related mortality among a spectrum of
weather parameters (Zhang et al., 2014). These studies indicated
that AH may be a better indicator of humidity in acute health ef-
fects. The COVID-19 outbreak in China happened in winter and
early spring with lower AH. Our results indicated that there might
exist an optimum low humidity for COVID-19 to spread. Because
those 12 cities with AH below 4 g/m3 confirmed fewer case counts
than other cities. For the 17 cities with more than 50 cases, results
showed that every 1 g/m3 increase in AH was significantly associ-
ated with declined confirmed case counts in lag 07, lag 014 and
the combined RR was 0.72 (95% CI: 0.59, 0.89) and 0.33 (95% CI:
0.21, 0.54). Consistent with our results, Liu et al. has explored the
effects of AH on H7N9 infection risks in China and found signifi-
cantly higher effects of low AH on risks of H7N9 infection (Liu
et al., 2018). Possible explanation is that low AH might increase
the stability of coronavirus and favor its transmission like influenza
did (Lowen et al., 2007). Our results are somewhat different from a
previous study about early COVID-19 outbreak, which reported
that the changes in temperature and humidity as spring and sum-
mer months arriving might not lead to decline of confirmed case
counts without the implementation of extensive public health in-
terventions (Luo et al., 2020). Although public health control mea-
sures play a major role in controlling pandemic like COVID-19, our
results indicate an independent role of weather conditions on the
transmission. Unlike this study, we used data over a longer period
and controlled the population migration in our models. Therefore,
we are optimistic that this epidemic will be faded to a large degree
in the coming warmer season with the enforcement of public
health interventions in China.

As we know, the COVID-19 in China firstly confirmed inWuhan and
a considerable proportion of confirmed cases in other cities of China
were imported fromWuhan, whichmay confuse the relation of meteo-
rological environment and COVID-19. However, we controlled its effect
with MSI and estimated a significant association between the meteoro-
logical environment and COVID-19 transmission. The most important
environmental implication is that, AT, DTR and AH are critical factor
for COVID-19 transmission, which also deserve to be better studied in
other regions during this pandemic.

In conclusions, our study implicates that meteorological factors play
an independent role in the COVID-19 transmission. A weather with low
temperature, mild diurnal temperature range and low humidity favors
the transmission. This study indicates that the epidemicmight gradually
ease as a result of rising temperatures in coming months as well as the
implementation of public health control measures.
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