UTH

Center for Spatial-Temporal Modeling for Applications in Population Sciences

Pioneering the use of spatial-temporal data science to uncover hidden patterns in public health data, transcending disciplinary boundaries, and facilitating the translation of insights into impactful public health interventions

About the Center for Spatial-Temporal Modeling for Applications in Population Sciences (CSMAPS)

Welcome. CSMAPS aims to uncover hidden patterns and dynamics within public health data, providing crucial insights across a myriad of public health fields - including infectious disease control, cancer research, mental health research, environmental health, health disparities, chronic disease management, and implementation sciences. Through this multidisciplinary lens, we are able to expose intersections and interdependencies typically overlooked by traditional analyses, offering a comprehensive understanding of population health as a complex, multifaceted phenomenon. The incorporation of implementation science further bridges the gap between research findings and practical application, facilitating the translation of these insights into tangible, impactful public health interventions and preventions.

Mission and Vision 

Our mission and vision are founded upon three fundamental principles: 

  • Innovation and Interdisciplinary Research: We are committed to pioneering the development and application of cutting-edge spatial-temporal data science, enriching our understanding of population health dynamics. By embracing an interdisciplinary approach, we integrate expertise to drive impactful solutions. 
  • Real-World Impact and Improvement of Health Outcomes: Our ultimate goal is to significantly enhance health outcomes for Texas. We aim to achieve this by transforming our innovative research findings into actionable policies and practices, and by forging strategic collaborations with community organizations, healthcare providers, policymakers, and other stakeholders. 
  • Dissemination and Support for Public Health Policy-making: We prioritize the broad dissemination of our research insights and the development of user-friendly software tools and visualizations. This approach not only makes complex data and analyses accessible to a wider audience but also supports informed public health policy-making. Furthermore, we are dedicated to bolstering the understanding and use of spatial-temporal modeling techniques among researchers, practitioners, and decision-makers through targeted capacity-building initiatives.